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Abstract

In this paper, we extend graph-based identification
methods by allowing background knowledge in the
form of non-zero parameter values. Such informa-
tion could be obtained, for example, from a previ-
ously conducted randomized experiment, from sub-
stantive understanding of the domain, or even an
identification technique. To incorporate such in-
formation systematically, we propose the addition
of auxiliary variables to the model, which are con-
structed so that certain paths will be conveniently
cancelled. This cancellation allows the auxiliary
variables to help conventional methods of iden-
tification (e.g., single-door criterion, instrumental
variables, half-trek criterion), as well as model test-
ing (e.g., d-separation, over-identification). More-
over, by iteratively alternating steps of identifica-
tion and adding auxiliary variables, we can improve
the power of existing identification methods via a
bootstrapping approach that does not require ex-
ternal knowledge. We operationalize this method
for simple instrumental sets (a generalization of in-
strumental variables) and show that the resulting
method is able to identify at least as many models
as the most general identification method for linear
systems known to date. We further discuss the ap-
plication of auxiliary variables to the tasks of model
testing and z-identification.

1 Introduction

Many researchers, particularly in economics, psychology,
epidemiology, and the social sciences, use linear structural
equation models (SEMs) to describe the causal and statistical
relationships between a set of variables, predict the effects of
interventions and policies, and to estimate parameters of in-
terest [Bollen and Pearl, 2013]. A linear SEM consists of a
set of equations of the form,

X =AX+U,

where X = [z1, ..., z,] is a vector containing the model vari-
ables, A is a matrix containing the coefficients of the model,
which convey the strength of the causal relationships, and
U = [u1, ..., up| is a vector of error terms, which represents

Judea Pearl
UCLA
judea@cs.ucla.edu

3577

Elias Bareinboim
Purdue University
eb@purdue.edu

omitted or latent variables and are assumed to be normally
distributed. The matrix A contains zeroes on the diagonal,
and A;; = 0 whenever z; is not a cause of x;. The covari-
ance matrix of X will be denoted by X and the covariance
matrix over the error terms, U, by €. The entries of A and
Q) are the model parameters. In this paper, we will restrict
our attention to semi-Markovian models [Pearl, 2000], mod-
els where the rows of A can be arranged so that it is lower
triangular.

When the coefficients are known, then total effects, direct
effects, and counterfactuals can be computed from them di-
rectly [Pearl, 2009; Chen and Pearl, 2014]. However, in order
to be able to compute these coefficients, we must utilize do-
main knowledge in the form of exclusion and independence
restrictions [Pearl, 1995, p. 704]. Exclusion restrictions rep-
resent assumptions that a given variable is not a direct cause
of another, while independence restrictions represent assump-
tions that no latent confounders exists between two variables.
Algebraically, these assumptions translate into restrictions on
entries in the coefficient matrix, A, and error term covariance
matrix, €2, to zero.

Determining whether model parameters can be expressed
in terms of the probability distribution, which is necessary to
be able to estimate them from data, is the problem of iden-
tification. When it is not possible to uniquely express the
value of a model parameter in terms of the probability distri-
bution, we will say that the parameter is not identifiable.' In
linear systems, this generally takes the form of expressing a
parameter in terms of the covariance matrix over the observ-
able variables.

To our knowledge, the most general method for determin-
ing model identification is the half-trek criterion [Foygel et
al., 2012]. Identifying individual structural coefficients can
be accomplished using the single-door criterion (i.e. identifi-
cation using regression) [Pearl, 2009; Chen and Pearl, 2014],
instrumental variables [Wright, 1925; 1928] (see [Brito and
Pearl, 2002], [Pearl, 20091, or [Chen and Pearl, 2014] for
a graphical characterization), instrumental sets [Brito and
Pearl, 2002], and the general half-trek criterion [Chen, 2015],
which generalizes the half-trek criterion for individual coeffi-

'We will also use the term “identifiable” with respect to the
model as a whole. When the model contains an unidentified co-
efficient, the model is not identified.



cients rather than entire models. Finally, d-separation [Pearl,
2009] and overidentification [Pearl, 2004; Chen et al., 2014]
provide the means to enumerate testable implications of the
model, which can be used to test it against data.

Each of these methods only utilize restrictions on the en-
tries of A and €2 to zero. In this paper, we introduce auxil-
iary variables, which can be used to incorporate knowledge
of non-zero coefficient values into existing methods of iden-
tification and model testing. The intuition behind auxiliary
variables is simple: if the coefficient from variable w to z is
known, then we would like to remove the direct effect of w on
z by subtracting it from z. We do this by creating a variable
z* = z — aw and using it as a proxy for z. In some cases,
z* may allow the identification of parameters or testable im-
plications using the aforementioned methods when z could
not.

While intuitively simple, auxiliary variables are able to
greatly increase the power of existing identification methods,
even without external knowledge of coefficient values. We
propose a bootstrapping procedure whereby coefficients are
iteratively identified using simple instrumental sets and then
used to generate auxiliary variables, which enable the iden-
tification of previously unidentifiable coefficients. We prove
that this method enhances the instrumental set method to the
extent that it is able to subsume the relatively more complex
general half-trek criterion (henceforth, g-HTC).

The notion of “subtracting out a direct effect” in order to
turn a variable into an instrument was first noted by [Shard-
ell, 2015] when attemping to identify the total effect of = on
y. It was noticed that in certain cases, the violation of the
independence restriction of a potential instrument z (i.e. z is
not independent of the error term of y) could be remedied by
identifying, using ordinary least squares regression, and then
subtracting out the necessary direct effects on y. In this paper,
we generalize and operationalize this notion so that it can be
used on arbitrary sets of known coefficient values and be uti-
lized in conjunction with graphical methods for identification
and enumeration of testable implications.

The paper is organized as follows: Sec. 2 reviews notation
and graphical notions that will be used in the paper. In sec. 3,
we introduce and formalize auxiliary variables and auxiliary
instrumental sets. Additionally, we give a sufficient graphical
condition for the identification of a set of coefficients using
auxiliary instrumental sets. In sec. 4, we show that auxil-
iary instrumental sets subsume the g-HTC. Finally, in sec. 5,
we discuss additional applications of auxiliary variables, in-
cluding identifying testable implications and z-identification
[Bareinboim and Pearl, 2012].

2 Preliminaries

The causal graph or path diagram of a SEM is a graph, G =
(V, D, B), where V are nodes or vertices, D directed edges,
and B bidirected edges. The nodes represent model variables.
Directed eges encode the direction of causality, and for each
coefficient A;; # 0, an edge is drawn from x; to ;. Each
directed edge, therefore, is associated with a coefficient in the
SEM, which we will often refer to as its structural coefficient.
The error terms, u;, are not shown explicitly in the graph.

However, a bidirected edge between two nodes indicates that
their corresponding error terms may be statistically dependent
while the lack of a bidirected edge indicates that the error
terms are independent.

If a directed edge, called (z, y), exists from z to y then x is
a parent of y. The set of parents of y is denoted Pa(y). Ad-
ditionally, we call y the head of («,y) and x the tail. The set
of tails for a set of directed edges, F, is denoted T'a(FE) while
the set of heads is denoted He(E). For a node, v, the set of
edges for which He(FE) = v is denoted Inc(v). Finally, the
set of nodes connected to y by a bidirected arc are called the
siblings of y or Sib(y).

A path from zx to y is a sequence of edges connecting the
two nodes. A path may go either along or against the direction
of the edges. A non-endpoint node w on a path is said to be a
collider if the edges preceding and following w both point to
w.
A path between x and y is said to be unblocked given a set
Z, with 2,y ¢ Z if every noncollider on the path is not in
Z and every collider on the path is in An(Z) [Pearl, 2009],
where An(Z) are the ancestors of Z. Unblocked paths of the
forma — ... = bora < ... « b are directed paths. Any
unblocked path that is not a directed path is a divergent path.

o(x,y) denotes the covariance between two random vari-
ables, = and y, and o/ (z, y) is the covariance between ran-
dom variables x and y induced by the model M. (z_ly)
denotes that x is independent of y, and similarly, (z_1ly)as
denotes that x is independent of y according to the model,
M. We will assume without loss of generality that the model
variables have been standardized to mean O and variance 1.

We will also utilize a number of definitions around half-
treks [Foygel et al., 2012].

Definition 1. A half-trek, , from x to y is an unblocked path
from x to y that either begins with a bidirected arc and then
continues with directed edges towards y or is simply a di-
rected path from x to y.

We will denote the set of nodes connected to a node, v, via
half-treks htr(v). For example, in Figure 3a, w <> z — © —
yand w — z — x — y are both half-treks from w to y.
However, z* < w — z in Figure 3b is not a half-trek from
z* to z because it begins with an arrow pointing to z*.

Definition 2. For a given path, , from x to y, Left(m) is the
set of nodes, if any, that has a directed edge leaving it in the
direction of x in addition to x. Right(r) is the set of nodes, if
any, that has a directed edge leaving it in the direction of y in
addition to y.

For example, consider the path m = = + vf + ...

v,f — vl = o —» . — of — y. In this case, Left(r)

J ;
= Uk vF U {z,vT} and Right(r) = UI_ v U {y,vT}. o7
is a member of both Right() and Left(r).

Definition 3. A set of paths, 71, ..., m,, has no sided inter-
section if for all w;,m; € {m,...,mp} such that m; # 7;,
Left(m-)ﬁLeft(wj)=Right(7ri)ﬂRight(7rj) = @

Consider the set of paths {m; = ¢ — y, 7m0 = 2z <> © —
w}. This set has no sided intersection, even though both
paths contain x, because Left(m;) = {x}, Left(m2) = {z},
Right(m) = {y}, and Right(ms) = {z,w}. In contrast,
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Figure 1: (a) « is not identified using instruments (b) The S-augmented graph, where « is identified using z* as an instrument

(a) (d)

Figure 2: « is identified in (a) and (b) using z* as an auxiliary
instrument

{m1 = = y,m2 = z = & — w} does have a sided in-
tersection because x is in both Right(7r;) and Right(7s).

Wright’s rules [Wright, 1921] allows us to equate the
model-implied covariance, oy (z,y), between any pair of
variables, x and y, to the sum of products of parameters along
unblocked paths between z and .2 Let IT = {7y, 72, ..., 7% }
denote the unblocked paths between x and y, and let p; be the
product of structural coefficients along path 7;. Then the co-
variance between variables x and y is ), p;. We will denote
the expression that Wright’s rules gives for o(z,y) in graph
G, Wg(z,y).

Instrumental variables (IVs) is one of the most common
methods of identifying parameters in linear models. The abil-
ity to use an instrumental set to identify a set of parameters
when none of those parameters are identifiable individually
using IVs was first proposed by [Brito and Pearl, 2002].

Definition 4 (Simple Instrumental Set). Z is a simple instru-
mental set for the coefficients associated with edges E =
{1 = y,....,xx — Yy} if the following conditions are sat-
isfied.

(i) |2 = k.
(ii) Let G g be the graph obtained from G by deleting edges

“Wright’s rules characterize the relationship between the covari-
ance matrix and model parameters. Therefore, any question about
identification using the covariance matrix can be decided by study-
ing the solutions for this system of equations. However, since these
equations are polynomials and not linear, it can be very difficult to
analyze identification of models using Wright’s rules [Brito, 2004].
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x1 = Yy — Y. Then, (z;lly)gy for all i €
{1,2,...,k}.?

(iii) There exist unblocked paths 11 = {my, 7o, ..., T} such
that m; is an unblocked path from z; to x; and Il has no
sided intersection.

If Z is a simple instrumental set for E, then we can use
Wright’s rules to obtain a set of | k| linearly independent equa-
tions in terms of the coefficients, enabling us to solve for the
coefficients [Brito and Pearl, 2002].

3 Auxiliary Variables

We start this section by motivating auxiliary variables through
an example. Consider the structural system depicted in Fig-
ure la. In this system, the structural coefficient « is not iden-
tifiable using instrumental variables or instrumental sets. To
witness, note that z, w, and s all fail to qualify as instruments
due to the spurious paths, 2z <— w <> y, w <> y, and s < v,
respectively*. If the coefficient 3 is known,’ we can add an
auxiliary variable, z* = z — fw, to the model. Subtracting
Bw from z cancels the effect of w on z so that w has no effect
on z* = (Bw + uy) — fw = uy. Now, z* is an instrument
for a. The sum of products of parameters along back-door
el

Surprisingly, auxiliary variables can even be used to gen-
erate instruments from effects of z and y. For example, con-
sider Figures 2a and 2b. In both examples, z is clearly not an
instrument for . However, in both cases, (3 is identifiable us-
ing ¢ as an instrument, allowing us to construct the auxiliary
variable, z* = z — ax, which does qualify as an instrument
for a (see Theorem 1 below).

paths from z* to y is equal to 0 and o =

3This condition can also be satisfied by conditioning on a set of
covariates without changing the results below, but for simplicity we
will not consider this case. When conditioning on a set of covariates,
Z is called a generalized instrumental set.

*Note that even if we consider conditional instruments [Brito
and Pearl, 2002], these paths cannot be blocked, and identification
is not possible.

SThe coefficient 8 may be available through different means, for
instance, from a smaller randomized experiment, pilot study, or sub-
stantive knowledge, just to cite a few. In this specific case, however,
B can be identified directly without invoking external information
by simply using S as an instrument.
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Figure 3: (a) b is identified using either v, or v; as an instrument (b) d is identified using v3 as an auxiliary instrument (c) a

and c are identified using v{ as an auxiliary instrument

The following definition establishes the [-augmented
model, which incorporates the z* variable into the model.%

Definition 5. Let M be a structural causal model with as-
sociated graph G and a set of directed edges E such that
their coefficient values are known. The E-augmented model,
MFE* includes all variables and structural equations of
M in addition to new auxiliary variables, yi, ...y}, one for
each variable in He(E) = {y1, ..., yx } such that the struc-
tural equation for y; is yi = y; — Ax,,, X}, where X; =
Ta(E) N Pa(y;), for all i € {1,...,k}. The corresponding
graph is denoted GF.

For example, let M and G be the model and graph de-
picted in Figure la. The S-augmented model is obtained by
adding a new variable z* = z — Sw to M. The correspond-
ing graph, GA7, is shown in Figure 1b. The following lemma
establishes that the covariance between any two variables in
V* =V U He*(E) can be obtained using Wright’s rules on
GF*, where V is the set of variables in M and He*(E) is
the set of variables added to the augmented model.”

Lemma 1. Given a linear structural model, M, with induced

graph G, and a set of directed edges E with known coefficient

values, o(w,v) = Wge+(w,v), where w,v € V* and w #
8

.

The above lemma guarantees that the covariance between
variables implied by the augmented graph is correct, and
Wright’s rules can be used to identify coefficients in the
model M. For example, using Wright’s rules on G°7, de-
picted in Figure 1b, yields

a(z",y) =(1% B8 - B)(Cwy +Csy)
+ (1 = % = BCwz)da
=a(0 — B2 %86 — B Cy, *0)

and
o(2*,x) =6 — B2 x5 — BxCyy, %6
so that a« = Zgzzg As a result, z* can be used as an instru-

mental variable for o when z clearly could not.

®[Chan and Kuroki, 2010] also gave a graphical criterion for
identification of a coefficient using descendants of z. « in Figure 2a
can also be identified using their method.

"Note that auxiliary variables may not have a variance of 1. We
will see that this does not affect the results of the paper since the
covariance between model variables implied by the graph is correct,
even after the addition of auxiliary variables.

8See [Chen er al., 2016] for proofs of all lemmas and theorems.

Definition 6 (Auxiliary Instrumental Set). Given a semi-
Markovian linear SEM with graph G and a set of directed
edges Ez whose coefficient values are known, we will say
that a set of nodes, Z, in G is an auxiliary instrumental set
oraux-IS for E if Z* = (Z \ A) U A* is an instrumental set
for E in GF7*, where A is the set of variables in Z that have
auxiliary variables in GF7+,

The following lemma characterizes when an auxiliary vari-
able will be independent of a model variable and is used to
prove Theorem 1.

Lemma 2. Given a semi-Markovian linear SEM with graph
G, (z* \Ly)ge.+ if and only if z is d-separated from y in Gg_,
where E, C Inc(z) and Gg_ is the graph obtained when E.,
is removed from G.

The following theorem provides a simple method for rec-
ognizing auxiliary instrumental sets using the graph, G.

Theorem 1. Let Ez be a set of directed edges whose co-
efficient values are known. A set of directed edges, £ =
{(z1,9), ..., (xk,y)}, in a graph, G, is identified if there ex-
ists Z such that:

1. |Z| =k,
2. forall z; € Z, (2 y)Gp,p. » where E,, = Ez N

Inc(z;) and Gpyg., is the graph obtained by removing
the edges in E U E,, from G, and

3. there exists unblocked paths 11 = {my, 7o, ..., 7 } such
that ; is a path from z; to x; and 11 has no sided inter-
section.

If the above conditions are satisfied then Z is an auxiliary
instrumental set for E.

Proof. We will show that Z* is an instrumental set in G¥7 .
First, note that if £z = (), then Z is an instrumental set in G
and we are done. We now consider the case when Ez # ().
Since [2*] = 2| — |A| + |A x| = |2| - |A] + |A] = |2,
|Z*| = |E|, IS-(i) is satisfied. Now, we show that IS-(iii) is
satisfied. For each z; € Z, let m,, € II be the path in II
from z; to Ta(E). Now, for each af € A*, let 7.+ be the
concatenation of path a* < a with m,,. It should be clear
that IT\ {7, } U {7, } satisfies IS-(iii) in G¥#v*. Lastly, we
need to show that IS-(ii) is also satisfied.

First, if z; € Z \ A, then (z;1y)g,. It follows that
(zilly) P2+ since no new paths from z; to y can be gen-

E

erated by adding the auxiliary nodes (see Lemma 8 in [Chen
et al., 2016]). Now, we know that (aj lly) ,e.,+ from (ii)
E
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and Lemma 2. Finally, since adding auxiliary variables can-
not generate new paths between the existing nodes, we know
that (a} 1Ly)oE,+, and we are done.

(a;-*JLy)ng+ for all a; € A follows from (ii), Lemma 2,

and the fact that no new paths from a; to y can be generated
by adding auxiliary nodes, proving the theorem. U

To see how Theorem 1 can be used to identify auxiliary in-
strumental sets, consider Figure 3a. Using instrumental sets,
we are able to identify b, but no other coefficients. Once b
is identified, d can be identified using v; as an instrument in
Gt since v3 qualifies as an instrument for d when the edge
for b is removed (see Figure 3b).? Now, the identification of
d allows us to identify @ and c using vZ in G¢*, since v is an
instrument for a and ¢ when the edge for d is removed (see
Figure 3c).

The above example also demonstrates that certain coeffi-
cients are identified only after using auxiliary instrumental
sets iteratively. We now define aux-IS identifiability, which
characterizes when a set of coefficients is identifiable using
auxiliary instrumental sets.

Definition 7 (Aux-IS Identifiability). Given a graph G, a set
of directed edges F is aux-IS identifiable if there exists a se-
quence of sets of directed edges (E1, Es, ...E}) s.t.

(i) Ei is identified using instrumental sets in G,

(ii) E; is identified using auxiliary instrumental sets for all
i€{2,3,..k}inGE * where E' C E; UFE,U ..U
E;i 1,

(iii) and F is identified using auxiliary instrumental sets in
GFrT, where Er C (E1 U FEy U ... U Ey).

4 Auxiliary Instrumental Sets and the
Half-Trek Criterion

In this section, we explore the power of auxiliary instrumen-
tal sets, ultimately showing that they are at least as power-
ful as the g-HTC. Having defined auxiliary instrumental sets,
we now briefly describe the g-HTC. The g-HTC is a general-
ization of the half-trek criterion that allows the identification
of arbitrary coefficients rather than the whole model [Chen,
20151.1 First, we give the definition for the general half-trek
criterion, then we will discuss how it can be used to iden-
tify coefficients before showing that any g-HTC identifiable
coefficient is also aux-IS identifiable.

Definition 8 (General Half-Trek Criterion). Let E be a set of
directed edges sharing a single head y. A set of variables Z
satisfies the general half-trek criterion with respect to I, if

(i) |Z] = |E],
(ii) Z N (yUSib(y)) =0,

(iii) There is a system of half-treks with no sided intersection
from Z to Ta(E), and

°Note that if |Z| = 1, then the conditions of Theorem 1 are
satisfied if Z is an instrumental set in Geug, .

19Tf any coefficient is not identified, then the half-trek criterion
algorithm will simply output that the model is not identified.
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Figure 4: (a) The effect of x on y is not identifiable in non-
parametric models, even with experiments over 2 (b) The aug-
mented graph, G7T, where « is identified using z as a quasi-
instrument, if we assume linearity (c) {x, w} is an instrumen-
tal set for {c, ~v}.

(iv) (Pa(y) \ Ta(E))Nhtr(Z) = 0.

A set of directed edges, F, sharing a head y is identifiable
if there exists a set, Zg, that satisfies the general half-trek
criterion (g-HTC) with respect to E, and Zg consists only of
“allowed” nodes. Intuitively, a node z is allowed if E, is
identified or empty, where I, is the set of edges that

(i) lie on half-treks from y to z or
(i) lie on paths between z and Pa(y) \ Ta(E).

We will continue to use the 'z, notation and allow Z to be
a set of nodes. When Z satisfies the g-HTC and consists only
of allowed nodes for F/, we say that Z is a g-HT admissible
set for E. If a g-HT admissible set exists for F, then the co-
efficients in E are g-HT identifiable. The lemma below char-
acterizes when a set of parameters is g-HT identifiable. This
characterization parallels Definition 7 and will prove useful
in the proofs to follow.

Lemma 3. If a set of directed edges, F, is g-HT identifiable,
then there exists sequences of sets of nodes, (Z1,...Zy), and
sets of edges, (E1, ..., Ey), such that

1. Z; satisfies the g-HTC with respect to E; for all © €
{1,....k},

2. Ez,y, = 0, where y; = He(E;) foralli € {1, ..., k},
and

3. EZLUL - (E1 U...u Ei,l)for alli € {1, k}

Proof. The lemma follows from Theorem 1 in [Chen, 2015].
O

To see how the g-HTC can be used to identify coefficients,
consider again Figure 3a. Initially, only b is identifiable. We
are able to use {v2} or {v;} as a g-HT admissible set for b
since E,,,, and E, ,, are equal to (). All other nodes are
half-trek reachable from vy and their edges on the half-trek
from v, are not identified. Once b is identified, we can use
{vs} as a g-HT admissible set to identify d. Similarly, once
d is identified, we can use vs as a g-HT admissible set to
identify a and c.



The following lemma connects g-HT-admissibility with
auxiliary instrumental sets.

Lemma 4. If Z is a g-HT-admissible set for a set of directed
edges E with head vy, then E is identified using instrumental
sets in GFzvt,

Now, we are ready to show that aux-IS identifiability sub-
sumes g-HT identifiability.

Theorem 2. Given a semi-Markovian linear SEM with graph
G, if a set of edges, E, with head vy, is g-HTC identifiable,
then it is aux-1S identifiable.

Proof. Since E is g-HTC identifiable, there exists sequences
of sets of nodes, (Z1,...Z;), and sets of edges, (F1, ..., Ex),
such that

1. Z; satisfies the g-HTC with respect to E; for all ¢ €
{1,...,k},

2. Ez,y, =0, where y; = He(E;) foralli € {1,..., k},
and

3. EZ“h - (El U...u Ei—l) forall i € {2, . ki}

Now, using Lemma 4, we see that there Z; is an in-
strumental set for E; in GFzZimnt = @ and E; is identi-
fied using instrumental sets and Lemma 3 in G¥%iv+ with
Ez.y C(E1U...UE;_q)foralli e {2,....k}. As aresult,
FE is Aux-IS identifiable. O

S Further Applications

We have formalized auxiliary variables and demonstrated
their ability to increase the identification power of instrumen-
tal sets. In this section, we discuss additional applications of
auxiliary variables as alluded to in the introduction, namely,
incorporating external knowledge of coefficients values and
deriving new constraints over the covariance matrix.

When the causal effect of x on y is not identifiable and per-
forming randomized experiments on z is not possible (due to
cost, ethical, or other considerations), we may nevertheless be
able to identify the causal effect of = on y using knowledge
gained from experiments on another set of variables Z. The
task of determining whether causal effects can be computed
using surrogate experiments generalizes the problem of iden-
tification and was named z-identification in [Bareinboim and
Pearl, 2012]. They provided necessary and sufficient condi-
tions for this task in the non-parametric setting. Considering
Figure 4a, one can immediately see that the effect of = on
y is not identifiable, given the unblockable back-door path.
Additionally, using BP’s z-identification condition, one can
see that the effect of x on y is not identifiable, even with ex-
periments over z. Remarkably, if one is willing to assume
that the system is linear, more can be said. The experiment
over z would yield -y, allowing us to create an auxiliary vari-
able, y*, which is represented by Figure 4b. Now, « can be
easily identified using auxiliary variables. To witness, note
that o(z,y*) = Cp.a +v — vy and o(z,2) = C,, so that

_ olzy")
o(z,x) "

While z is not technically an instrument for o in G7, it
behaves like one. When z allows the identification of « by us-
ing an auxiliary variable y*, we will call z a quasi-instrument.
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The question naturally arises whether we can improve aux-
IS identifiability (Def. 7) by using quasi-instruments. How-
ever, aux-IS identifiability requires that we learn the value
of ~ from the model, not externally. In order to identify ~y
from the model, we would require an instrument. If such an
instrument, w, existed, as in Figure 4c, then both v and «
could have been identified together using {z,w} as an instru-
mental set. As a result, quasi-instruments are not necessary.
However, if v could only be evaluated externally, then quasi-
instruments are necessary to identify a.

In some cases, the cancellation of paths due to auxil-
iary variables may generate new vanishing correlation con-
straints. For example, in Figure 1b, we have that o(z*, s)
By — B~y = 0. Thus, we see that auxiliary variables allows
us to identify additional testable implications of the model.
Moreover, if certain coefficients are evaluated externally, that
information can also be used to generate testable implica-
tions. Lemma 2 can be used to identify independences in-
volving auxiliary variables from the graph, G.

Besides z-identification and model testing, these new con-
straints can also be used to prune the space of compatible
models in the task of structural learning. Additionally, it is
natural to envision that auxiliary variables can be useful to an-
swer evaluation questions in different, but somewhat related
domains, such as in the transportability problem [Pearl and
Bareinboim, 2011], or more broadly, the data-fusion problem
[Bareinboim and Pearl, 2015], where datasets collected un-
der heterogenous conditions need to be combined to answer
a query in a target domain.

6 Conclusion

In this paper, we tackle the fundamental problem of identifi-
cation in linear system as articulated by [Fisher, 1966]. We
move towards a general solution of the problem, enriching
graph-based identification and model testing methods by in-
troducing auxiliary variables. Auxiliary variables allows ex-
isting identification and model testing methods to incorporate
knowledge of non-zero parameter values. We proved inde-
pendence properties of auxiliary variables and demonstrated
that by iteratively identifying parameters using auxiliary in-
strumental sets, we are able to greatly increase the power of
instrumental sets, to the extent that it subsumes the most gen-
eral criterion for identification of linear SEMs known to date.
We further discussed how auxiliary variables can be useful
for the general tasks of testing and z-identification.
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