Doc2X:破解RAG文档解析难题的核心引擎

摘要

在构建生产级RAG系统时,文档解析质量直接决定系统上限。本文深入解析Doc2X如何通过跨页表格合并LaTeX公式保留图文关联抽取三大技术创新,解决传统方案中上下文割裂、语义丢失等痛点。结合金融、医疗等场景案例,通过架构图与性能对比,揭示其如何提升检索准确率30%+ 并降低幻觉风险50%。全文超5000字,含7张技术图解与4个API集成示例。


1 RAG的“阿喀琉斯之踵”:文档解析失准

1.1 传统解析方案的致命缺陷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一休哥助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值