自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

fudaihb的博客

一休哥助手,你的生活和工作好帮手

  • 博客(797)
  • 收藏
  • 关注

原创 SmolLM3 架构深度解析:3B小模型的性能革命与工程艺术

Hugging Face开源30亿参数模型SmolLM3,通过轻量化架构创新实现128K长文本处理、多语言支持和双模式推理。其核心突破包括分组查询注意力(GQA)减少75%显存占用、动态位置编码(NoPE)优化长文本性能,以及三阶段渐进式训练策略。模型支持思考/直答双模式切换,在复杂任务中精度提升294%,简单查询响应提速3倍。实测显示,SmolLM3性能逼近4B级模型,显存需求仅8GB(INT4),适用于边缘设备部署。开源工具链涵盖训练框架nanotron和数据处理管道datatrove,为高效AI开发树

2025-08-12 09:13:01 413

原创 GPT-5 全面解析与最佳实践指南

OpenAI最新发布的GPT-5在代码生成、精准指令执行和长上下文处理方面实现显著突破。该系列提供三款模型(gpt-5、mini版和nano版),分别适配复杂推理、成本优化及高吞吐场景。API新增四大特性:最小化推理模式(提升响应速度)、冗长度控制(调节输出详略)、自定义工具(支持任意代码/命令执行)和允许工具列表(灵活限制调用范围)。迁移指南建议根据任务复杂度选择模型版本,并推荐使用Responses API传递链式推理以提升效率。最佳实践强调在多轮对话中保持思维链连续性,官方同时提供提示词优化工

2025-08-11 18:44:58 323

原创 Qwen 3 架构深度解析:混合推理、MoE创新与开源生态的全面突破

本文深度剖析阿里巴巴Qwen 3大模型的核心架构设计,揭示其如何通过双模式推理引擎、动态MoE系统与36万亿token训练策略重塑开源大模型的技术边界,实现性能与效率的完美平衡。

2025-08-11 09:25:39 679

原创 Llama 4 架构深度解析:MoE革命、千万级上下文与开源

Llama 4既是工程奇迹——通过MoE稀疏激活、早期融合和iRoPE架构,实现参数效率与长上下文处理的突破;也是生态博弈的缩影——技术光环下的评测争议、中文缺失与许可条款,折射出Meta在开源理想与商业现实间的艰难平衡。证明开源模型可在性能上比肩闭源巨头,但也揭示技术民主化仍面临算力门槛与地缘隔阂。这场战役的终局,将取决于Meta能否以真正的开放,换取全球开发者共同守护这艘“开源方舟”。参考文献深度解析Llama 4:性能突破、架构创新与生态应用Llama 4架构解析与本地部署指南。

2025-08-09 20:08:07 748

原创 Mistral Small 3.1 架构深度解析:高效小型模型的巅峰之作

Mistral Small 3.1证明了模型能力不再由参数规模决定——通过创新的稀疏MoE架构、渐进式知识蒸馏和极致的推理优化,小型模型也能挑战大型模型的性能王座。当效率与性能完美统一,当专业知识与通用智能无缝融合,AI民主化的新时代已经到来。

2025-08-09 12:19:43 799

原创 Gemma 3 架构深度解析:谷歌轻量级大模型的革新之路

谷歌Gemma 3在7B参数规模下实现了突破性性能,超越传统70B级大模型。其核心创新包括:1)稀疏MoE架构,集成4个轻量级专家模块与动态路由机制;2)注意力优化,采用FlashAttention-3和增强旋转位置编码;3)三阶段训练流程,结合多教师知识蒸馏技术(PaLM 2/Gemini等)。推理方面支持动态量化(INT4/INT8/FP16)和连续批处理,速度提升3-5倍。知识处理能力突出,支持128K长上下文层次压缩和领域适配训练,专业任务准确率提升35%。该架构为轻量级大模型树立了新标杆。

2025-08-08 09:26:46 953

原创 OLMo 2 架构深度解析:开放语言模型的技术革命

AI2推出的OLMo 2开源大模型通过三大创新挑战闭源模型:70B参数规模与8K上下文窗口支持;动态稀疏注意力机制实现高效计算;完全开源模型权重、训练代码和3万亿token的Dolma数据集。架构上采用动态路由算法混合局部/全局注意力模式,结合门控MLP增强,在MMLU等基准测试中接近GPT-4水平(82.1 vs 86.4)。训练基础设施实现1.8 exaFLOPS吞吐,配合严格的数据质量控制流程,为开源社区提供透明可复现的大模型范例。

2025-08-07 18:37:54 1031

原创 DeepSeek-V3/R1 架构深度剖析:国产大模型的创新突围之路

本文深入解析DeepSeek-V3/R1大模型的核心创新,该模型在架构设计、效率优化与知识处理方面实现重大突破。采用MoE混合专家系统、128K上下文窗口和动态路由机制,模型规模达67B参数,推理速度提升3倍。关键技术包括:1)FlashAttention-2优化长序列处理;2)INT8/INT4量化实现3.7倍加速;3)知识图谱增强专业领域表现(法律/医疗/金融超越GPT-4)。典型应用场景展示其处理企业知识库和长文档的卓越能力,支持128K上下文的高效解析。DeepSeek-V3/R1通过系统级创新,成

2025-08-07 09:34:41 1057

原创 Anthropic MCP架构深度解析:下一代AI工具集成协议的设计哲学

Anthropic提出的模型通信协议(MCP)重构了AI与工具生态的交互范式,通过统一协议层解决当前AI生态面临的"巴别塔困境"。MCP采用三层架构模型,包含客户端、协议层和服务器端,实现安全高效的资源访问。核心创新包括:标准化的协议消息结构、五核驱动客户端引擎、智能路由机制和纵深防御体系。该协议支持多种应用场景,如IDE数据查询和云端文件协作,并通过自适应采样算法和可插拔适配器架构实现性能优化与扩展。MCP通过TLS加密、OAuth认证和RBAC权限控制构建全方位安全防护,为AI工具生

2025-08-06 19:38:48 891

原创 智能体记忆系统架构设计:从事件存储到社区认知的三层模型

本文深入解析人类级记忆系统的三层架构设计,揭示智能体如何实现从原始事件存储到社区关系建模的认知进化,赋能长期对话、个性化服务等复杂场景。

2025-08-06 09:29:31 790

原创 ReAct模式深度解析:构建具备推理能力的AI智能体架构

本文深入剖析ReAct(Reasoning+Acting)架构设计模式,揭示如何通过推理与行动循环构建具备自主决策能力的AI智能体,并展示其在复杂问题求解中的革命性突破。

2025-08-01 18:05:10 704

原创 AI智能体架构设计全景指南:从工具集成到企业级应用

本文深度解析AI智能体系统的分层架构设计,涵盖工具扩展、组件化设计、知识融合等核心模块,通过实战案例揭示智能体在会议助手、合同审查等场景的实现逻辑。

2025-08-01 09:12:51 851

原创 企业级AI大模型开发全景图:从原理到落地的知识体系

本文系统阐述企业级AI大模型开发的知识体系,聚焦多模态应用、存量改造和增量创新三大维度。在技术应用层面,解析了OCR合同审查、语音数字人等典型场景的实现方案;在系统改造方面,提出了基于价值矩阵的旧系统升级路径;在创新领域,设计了多Agent协同和Text2SQL等前沿应用。同时详述了开发框架选型、架构设计原则和向量数据库评估等关键技术,并对比了RAG与微调的场景适用性。最后剖析了Transformer架构原理,为企业构建自主AI能力提供全流程指导。

2025-07-30 09:19:22 669

原创 AI大模型应用技术体系全景解析:从基础设施到行业创新

本文系统解构了AI大模型应用技术体系的六大核心层级:基础设施层(算力/存储/网络)、云原生层(容器/K8s)、模型层(LLM/多模态)、应用技术层(RAG/Agent)、应用架构层(业务工程融合)和应用层(场景实现)。通过城市系统隐喻,揭示了各层级的协同逻辑,重点分析了关键技术组件如GPU异构计算、RAG与微调方案选择、三维融合架构设计等。文章指出当前技术瓶颈包括幻觉控制和长上下文处理,未来发展方向将聚焦神经符号融合与世界模型构建。最终强调构建持续进化的AI原生架构体系,是企业实现智能化转型的关键路径。

2025-07-29 09:17:31 52

原创 MCP架构:模型上下文协议的范式革命与工程实践

Meta提出的模型上下文协议(MCP)解决了大模型时代的三大上下文挑战:状态丢失、上下文膨胀和多模型兼容性差。MCP采用分层架构(应用层、管理层、传输层、存储层),通过神经压缩(10:1压缩率)、增量同步(降低92%带宽)和上下文感知路由等核心技术,实现跨会话的上下文无缝传递。企业案例显示,MCP使风险检测速度提升6倍,存储成本降低78%。开发者可通过标准化SDK快速集成,支持高可用集群部署。MCP协议将向量子安全加密等方向演进,持续优化大模型的上下文管理效率。

2025-07-28 19:27:40 1265

原创 向量索引双雄:HNSW与IVF_PQ原理深度解析与工程实践指南

2025年,全球向量检索日均请求量突破1200亿次,面对海量高维数据,传统索引方法陷入困境:暴力搜索(Brute-force)的复杂度O(N)无法扩展,树形结构(KD-Tree)在维度>20时性能断崖式下降。在此背景下,HNSW(高速导航) 与 IVF_PQ(高压缩索引) 成为解决高维搜索问题的双子星。本文将深入解析两种索引的核心原理、性能特性及工程实践,为开发者提供全面的技术选型指南。

2025-07-28 09:19:19 141

原创 向量表示法的三维世界:稠密向量、稀疏向量与二值向量全

本文系统解析了AI领域的三种核心向量表示法:稠密向量、稀疏向量和二值向量。稠密向量适合语义理解任务,通过神经网络生成固定维度的连续值向量,但存储成本高;稀疏向量以轻量级方式表达超高维特征,适用于关键词检索等场景;二值向量则通过0/1编码实现高效计算,特别适合大规模近似搜索。文章对比了三者在维度、存储成本、计算复杂度等关键指标上的差异,并提供了技术选型指南。最后指出混合架构是突破单一表示局限的未来方向。

2025-07-25 09:11:29 1249

原创 跨模态理解的基石:非文本内容向量化方法全景解析

2025年,全球数据总量突破300ZB,其中非结构化数据占比超80%(图像、视频、音频、传感器日志等)。传统关键词检索技术面对此类数据时,查准率不足40%,而向量化技术通过将非文本内容映射为高维空间中的稠密向量,使机器获得理解语义关联的能力。本文将系统解析图像、音频、视频等非文本内容的向量化方法,结合行业实践与前沿趋势,为开发者提供技术选型指南。

2025-07-24 18:45:39 1112

原创 ChatGPT Agent架构深度解析:OpenAI如何构建统一智能体系统

2025年7月17日,OpenAI发布的ChatGPT Agent标志着对话式AI从“被动应答”向主动执行的历史性转变。这款融合Operator网页操作与Deep Research信息分析能力的新型智能体,通过统一架构设计实现了复杂任务的端到端自主执行。在金融分析基准测试中,其任务完成效率较传统方法提升300%,错误率降低42%。本文将深入剖析其技术架构、创新设计及行业影响。

2025-07-24 09:15:27 810

原创 基于LangGraph的Open Deep Research架构全解析:从多Agent协作到企业级落地

本文探讨了基于LangGraph框架构建开源自主研究型智能体的方法。该系统采用多Agent协作范式,通过状态机模型实现研究流程精准控制,包含查询生成、并行搜索、反思优化和报告综合五个阶段。相比闭源方案,该架构支持动态模型路由、安全沙箱和成本优化策略,在医疗和金融等场景中实现自动化研究任务。实验显示其性能接近商业系统而成本显著降低。未来将向多模态研究、联邦协作和硬件加速方向演进,推动开源生态在AI研究领域的创新应用。

2025-07-22 18:54:05 742

原创 AI智能体向量数据库选型指南:从核心原则到场景化落地

向量数据库作为AI智能体的“长期记忆”核心组件,其选型直接影响响应速度、决策准确性和成本效率。本文提出“四能”评估框架(兼容性、动态管理、复杂查询、企业扩展),结合性能测试与生态适配性分析,为不同场景提供选型建议:金融风控推荐Milvus(高性能),医疗知识库适合S3 Vectors(低成本),客服机器人优选Qdrant(平衡型)。关键挑战在于平衡性能、规模与成本的“不可能三角”,需根据智能体类型(如RAG增强、实时决策等)匹配最佳方案,并关注开源协议与多云部署能力。

2025-07-22 09:43:55 1203

原创 基于LangChain构建企业级AI智能体:从架构设计到行业落地实战

随着大语言模型(LLM)从文本生成工具进化为自主决策与执行的智能体(Agent),企业级AI应用正经历范式转移。Gartner预测2025年企业级Agent应用将增长300%,覆盖客服、金融分析、工业质检等核心场景。本文以LangChain框架为核心,深度解析企业级智能体的架构设计、关键技术模块与落地实践,涵盖记忆系统优化、多Agent协作、安全合规等关键挑战,并提供可复用的工程方案。

2025-07-21 18:45:59 741

原创 CUDA与RISC-V的融合:打破架构霸权,重塑AI计算未来

英伟达宣布将CUDA移植至RISC-V架构,打破x86/Arm垄断格局。这一战略举措源于其多年技术积累(已部署十亿颗RISC-V核心)和对开放生态的前瞻布局。移植面临内存一致性、平台规范、虚拟化等挑战,但成功后将重构计算产业:加速RISC-V在数据中心渗透,推动国产算力闭环,形成"专有生态+开源硬件"的创新模式。预计到2030年,RISC-V将占据全球1/4处理器市场,标志着计算架构多元化时代的到来。此举既满足AI算力需求,也赋予开发者更多架构选择权。

2025-07-21 09:36:19 1072

原创 企业级AI智能体架构落地:工程化能力设计的全景指南

2025年全球企业智能体部署率突破45%,但实施失败率高达60%。摩根士丹利调研显示:78%的失败案例源于工程化能力缺失——智能体在实验室表现优异,却在生产环境遭遇性能坍塌、安全漏洞或运维灾难。本文系统解析企业级智能体架构的七大工程能力支柱,结合金融、医疗、制造行业落地案例,提供可复用的工程框架与实施路径。

2025-07-17 18:54:46 1033

原创 智能体架构深度解构:一次用户请求的完整旅程

当用户向AI智能体发出一个简单请求时,背后正上演着一场精密的认知交响乐。2025年全球智能体日均处理请求量突破120亿次,但仅38%的用户理解其内部运作机制。本文通过解构一次真实请求的完整生命周期(从输入到输出),揭示智能体架构的核心流程与关键技术,涵盖11个关键步骤与23项核心技术,为开发者提供全景式架构指南。

2025-07-16 18:47:08 1438

原创 智能体架构设计的五大核心原则:构建下一代AI系统的工程基石

人工智能领域正经历从孤立模型向自主智能体的范式转变。2025年,全球AI智能体市场规模突破200亿美元,在金融、医疗、制造等领域的渗透率超40%。然而,智能体开发仍面临协作效率低(多智能体任务重叠率达30%)、安全风险高(工具调用错误率18%)和系统僵化(需求变更迭代周期超2周)三大痛点。本文基于产业实践提炼五大核心设计原则,为构建下一代智能体系统提供架构指南。

2025-07-16 09:10:39 918

原创 AI大模型应用架构演进:从LLM基础到Agent协作的范式转移

人工智能领域正经历一场深刻的架构变革。从早期单一的大语言模型(LLM)到如今的智能体(Agent)协作网络,AI应用架构的演进不仅代表着技术能力的提升,更标志着设计范式的根本转变。随着2025年全球AI算力突破1000 EFLOPS(百亿亿次浮点计算/秒)大关,这一演进正在加速重构各行业智能化解决方案的技术底座。

2025-07-15 18:35:51 1038

原创 Claude技术全景解读:从安全聊天机器人到自主智能体的演进之路

随着生成式AI进入任务自动化新阶段,Anthropic的Claude系列模型凭借安全架构与代理能力的持续突破,已成为大模型赛道的关键力量。本文深入解析Claude的技术演进、核心架构、突破性特性(如7小时连续编码、混合推理模式)及行业应用,揭示其如何从对话助手蜕变为企业级任务执行引擎,并展望AI智能体的未来发展趋势。

2025-07-15 09:18:48 1075

原创 HNSW(分层导航最小世界)算法:高维向量检索的导航革命

在人工智能和大数据时代,向量检索已成为相似性搜索的核心技术,支撑着推荐系统、图像搜索、自然语言处理等关键应用。然而,随着维度增加,传统的检索方法面临"维度灾难"(Curse of Dimensionality):在1000维空间中,随机两点间距离的方差趋近于零,所有点都"同样相似"。这种困境下,HNSW(Hierarchical Navigable Small World)算法通过分层导航图结构,实现了高维空间的高效搜索,将千万级向量的查询延迟从秒级降至毫秒级。

2025-07-14 18:36:52 918

原创 RAG精度跃迁之钥:全面解析Rerank重排序核心原理与工程实践

在检索增强生成(RAG)系统中,向量检索作为核心环节直接决定了生成答案的质量。然而,仅依赖初步检索的RAG系统常面临“近似而非精确”的困境——当用户查询“苹果公司新品发布会”时,向量可能返回“水果苹果种植技术”文档;搜索“Java并发编程”却召回“印尼爪哇岛旅游”内容。研究表明,这种语义漂移导致仅靠向量检索的RAG系统在复杂任务中的准确率不足60%。

2025-07-14 09:15:36 935

原创 SpringAI×Ollama:Java生态无缝集成本地大模型实践指南

随着大语言模型(LLM)的普及,数据隐私和技术栈统一性成为企业级AI应用的核心挑战。本文系统阐述如何通过SpringAI框架与Ollama本地化模型引擎的结合,构建安全高效的生成式AI应用。通过实战案例解析配置优化、流式响应、工具调用等关键技术,为Java开发者提供零Python依赖的LLM集成方案,显著降低AI应用开发门槛。

2025-07-10 11:59:57 505

原创 AI智能体记忆架构的革命:LangGraph中的分层记忆系统实现

随着AI智能体在复杂任务场景中的广泛应用,记忆管理已成为决定智能体性能与用户体验的核心瓶颈。本文深入探讨LangGraph框架如何通过分层记忆架构(短期记忆+长期记忆+向量化记忆)解决智能体“记忆过载”问题,并结合Mem0等创新技术实现个性化记忆管理。通过摩根大通Ask David、个性化客服系统等实战案例,展示记忆架构如何将任务处理效率提升40%以上,并为开发者提供可落地的工程实践方案。

2025-07-09 18:56:29 413

原创 上下文工程:AI 智能体架构落地的关键新技术

随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(Context Engineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理质量,为复杂任务场景下的AI智能体提供可落地的技术路径。

2025-07-09 09:46:44 899

原创 Coze智能体平台全景解析:从零构建企业级AI应用的实战指南

在AI技术爆发式增长的2025年,Coze(扣子) 作为字节跳动推出的一站式AI智能体开发平台,正在彻底改变传统AI应用的构建方式。通过零代码可视化界面与全生命周期管理工具,Coze使开发者能够快速构建、部署和优化智能体(AI Agent),将开发效率提升3-5倍。截至2025年,超过50万开发者在Coze上创建了200万+智能体,覆盖金融、医疗、教育等30+行业。本文将深入剖析Coze的技术架构、开发范式与实战应用,助您掌握下一代AI开发利器。

2025-07-08 18:46:02 580

原创 MCP工具智能选择架构:AI智能体的“万能手”进化之路

在AI智能体技术栈中,工具调用能力已成为衡量智能体实用性的核心指标。随着Awesome MCP Servers等开源项目汇集200+现成服务组件,开发者面临前所未有的新挑战:如何在运行时从海量MCP工具中动态选择最优组合?本文将深入解析海量MCP工具优雅选择的核心架构,结合工业、医疗、金融等场景案例,揭示如何实现95%+工具调用准确率与毫秒级决策延迟。

2025-07-08 09:09:11 470

原创 AI智能体长期记忆系统架构设计与落地实践:从理论到生产部署

长期记忆能力是AI智能体实现持续个性化服务的核心瓶颈。本文基于Mem0、MemoryOS等前沿研究,系统解析长期记忆系统的三级架构、六大原子操作与生产级优化方案,结合金融、医疗等场景案例,通过7张架构图与4张对比表格,揭示如何实现91%延迟降低与90%成本节约的企业级记忆系统。全文超6000字,提供可落地的架构范式。

2025-07-07 18:38:29 1117

原创 TOGAF企业架构框架全景解析:从理论到数字化转型实战

在数字化转型浪潮中,企业架构(Enterprise Architecture) 已成为组织实现战略对齐与高效治理的核心方法论。TOGAF(The Open Group Architecture Framework)作为全球市场占有率超过60% 的权威框架,为超过80%的福布斯全球50强企业提供架构实践指南。本文深入解析TOGAF 10的核心框架、实施路径与实践案例,助力企业构建战略落地的架构引擎。

2025-07-07 09:23:19 563

原创 大模型的三类核心范式:基座模型、聊天模型与指令模型的技术解析

在人工智能领域,大模型已成为推动技术革新的核心引擎。随着参数规模从亿级迈向万亿级,大模型逐渐分化出三类技术范式:基座模型(Base Model)、聊天模型(Chat Model) 和指令模型(Instruct Model)。这三类模型构成了现代AI应用的“技术树”,支撑着从通用理解到垂直场景的智能化需求。本文将深入解析其技术原理、训练方法和应用场景,为开发者提供选型指南。

2025-07-03 09:19:26 1365

原创 Stable Diffusion完全指南:从原理到实战的AI绘画革命

在人工智能领域,Stable Diffusion无疑是近年来最具颠覆性的技术之一。这个开源图像生成模型不仅大幅降低了AI绘画的门槛,更在质量、速度和可控性上实现了质的飞跃。截至2025年,Stable Diffusion已迭代至3.5版本,全球用户超过2000万,日均生成图像超1亿张。本文将深入解析其技术原理、核心功能、实战技巧及未来趋势,带您全面掌握这一创作利器。

2025-07-02 18:44:35 971

原创 知识图谱:构建机器认知世界的语义网络

知识图谱作为人工智能的结构化认知引擎,正在重塑信息处理与机器推理的范式。本文深入解析知识图谱的核心技术体系,涵盖本体建模、知识抽取、图神经网络与推理引擎四大支柱,通过12张架构图解与真实案例,揭示其如何支撑搜索引擎、金融风控、智能医疗等核心场景。全文超6000字,结合Google知识图谱、Wikidata等工业级实践,为开发者提供从理论到落地的完整指南。

2025-07-02 09:19:32 1142

软考论文预习讲义项目管理师

软考论文预习讲义项目管理师

2025-03-28

清华大学deepseek使用教程

清华大学deepseek使用教程

2025-02-28

软考高级系统架构设计师:思维导图、经验总结、知识点整理、学习笔记、考前背诵等

软考高级系统架构设计师:思维导图、经验总结、知识点整理、学习笔记、考前背诵等

2025-02-08

软考系统架构师参考论文

软考系统架构师参考论文

2024-10-16

15 种高级 RAG 技术 从预检索到生成

我们关于检索增强生成 (RAG) 的入门文章介绍了关键概念,并探讨了 RAG 系统的工作原理。在本白皮书中,我们探索了 15 种高级 RAG 技术,以提高生成式 AI 系统的输出质量和整体性能的鲁棒性。这些高级 RAG 技术极大地扩展了团队微调系统性能的选择。例如,在为一家大型金融服务公司构建安全的对话式 AI 助手时,我们实验了本白皮书中探讨的大多数高级 RAG 技术。这使我们能够测试并识别适当的优化方案,从预检索到生成,利用我们的自动化 RAG 评估管道。

2024-09-25

huggingface上bge-reranker-base模型文件下载和本地使用

模型使用: from sentence_transformers import SentenceTransformer sentences_1 = ["你是谁"] sentences_2 = ["你是哪个", "你是谁啊","who are you","谁"] model = SentenceTransformer('/Users/hb-mac/Documents/chatGpt/llam/bge-reranker-base') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity)

2024-06-19

llamaindex入门案例代码

注意: (1)python版本:3.11 (2)llamaindex版本:pip3 install llama-index==0.9.34 (3)底层大模型使用默认的chatGpt,需要有chatGpt的api_key (4)本地网络环境需要梯子

2024-02-29

承诺书模板-网站备案信息真实性承诺书.pdf

承诺书模板-网站备案信息真实性承诺书.pdf

2023-12-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除