- 博客(3176)
- 收藏
- 关注
转载 Linux系统之dnf包管理器的基本使用
DNF(Dandified Yum)是Fedora Linux操作系统中的一个包管理器,它是基于Yum开发的。它的主要特点是快速、可靠、易用和优秀的用户体验。安装软件包:使用dnf install命令,后跟要安装的软件包的名称。例如,dnf install firefox安装Firefox浏览器。升级软件包:使用dnf upgrade命令升级所有已安装的软件包。dnf upgrade package-name升级单个软件包。搜索软件包:使用dnf search命令搜索要安装的软件包。
2025-08-15 10:33:29
3
原创 离线机器使用yum安装软件包
DNF(Dandified Yum,打扮过的yum,是指对yum进行了一定程度的定制或改进)是Fedora Linux操作系统中的一个包管理器,它是基于Yum开发的。将下载的 RPM 包或整个仓库目录通过 U 盘、SCP 或其他方式复制到离线机器的指定目录,例如。关键点在于提前完整收集依赖并配置本地仓库。:确保所有依赖包均在本地仓库中,或使用。:确保 YUM 有权限读取仓库目录(如。通过以上步骤,即可在离线环境中高效使用。工具(通过离线 RPM 包安装)。安装软件包需要提前准备。解决依赖关系,可能失败。
2025-08-15 10:11:10
45
原创 离线机器使用apt安装软件包
(如 Ubuntu 20.04 的包不能用于 18.04)。通过 U盘、移动硬盘或内网共享传输下载好的。包含所有依赖包,可直接复制到离线机器。1)确保离线机器的系统版本与下载包的。强制安装(不推荐,可能破坏系统)。执行安装命令,或确保当前用户有。:需手动处理依赖链,容易遗漏。安装软件包需要提前准备。,避免因缺失包导致失败。重新在联网环境中运行。
2025-08-15 09:53:02
40
转载 node 包管理工具:npm、pnpm、cnpm、npx、yarn
npm全称,是 node.js 的模块依赖管理工具。npm 之于 Node.js ,就像 pip 之于 Python, gem 之于 Ruby, pear 之于 PHP。npm 是随同 Node.js 一起安装的包管理工具,它很方便让 JavaScript 开发者下载、安装、上传以及管理已经安装的包,能解决 Node.js 代码部署上的很多问题,常见的场景有以下几种:1)允许用户从 npm 服务器下载别人编写的第三方包到本地使用。
2025-08-14 15:15:07
47
转载 openEuler 22.03 LTS 内核基础页大小配置选项讨论
页表在操作系统中作为最基础的内存分配结构,ARM64 支持4K、16K、64K不同大小的页表。当前页表大小只支持静态配置,不支持动态修改。OS 一旦选定一个页表大小,为了兼容性考虑,在该版本生命周期内,一般不会再修改。openEuler 20.03 LTS ARM64 选择的是 64K 页表。当前有多个使用者反馈,64K 存在兼容性问题。因此重新讨论后续的 22.03 LTS (5.10内核)页表大小的选择。
2025-08-14 10:11:14
16
转载 云端算力王者之争:Intel Xeon 6900与AMD EPYC 9004全方位评测
Intel Xeon 6900系列代表着英特尔在服务器处理器领域的最新成果,采用增强版Intel 7制程工艺打造。该系列最高配置56个物理核心,通过超线程技术支持112个逻辑线程,在处理多线程任务时展现出卓越的性能表现。内存子系统方面,支持8通道DDR5-4800内存配置,最高可扩展至4TB容量,为内存密集型应用提供了充足带宽。特别值得一提的是其集成的AMX高级矩阵扩展指令集,这项专为AI和机器学习优化的技术,能够在矩阵运算场景带来显著的性能提升。
2025-08-14 09:05:39
40
转载 CentOS 7.6安装过程中,安装信息摘要显示无可用网络设备问题处理
我要使用的网卡是名称是enp3s0(使用ip addr发现网卡自动获取的地址与子网掩码是192.168.17.82/24,网关是192.168.17.254)使用以下命令修改为静态IP。安装信息摘要显示无可用网络设备问题处理,此时注定了,镜像没有带符合主板网卡的驱动,在系统安装完成后,我们需要安装网卡驱动才能正常网络通信。lsblk 或者 sudo fdisk -l 命令找出U盘的设备名称,我的U盘是/dev/sda1。这个网站中很容易就找到需要的网卡驱动(网站中R8125的都是可以使用的)
2025-08-13 16:38:17
20
转载 CentOS6.5安装后无网络
vi /etc/sysconfig/network #注意里面是空的,此时只需要保存退出即可(esc---shfit+:---wq---Enter),接下来再次执行service NetworkManager start 见证奇迹吧。补充:按照以上步骤装完,可能还是无法显示网络,无法上网,研究了两个多小时。删除网卡驱动指令:首先用lsmod 来查看所有的驱动,找到自己的网卡驱动,然后执行:rmmod驱动名。a、声明,按照以上步骤进行操作,网卡驱动是肯定可以装上的!这就好办了,那就编写下嘛。
2025-08-13 16:34:42
20
转载 国产系统大致比较和分析(优麒麟、开放麒麟、深度deepin、统信UOS、银河麒麟、中标麒麟)
目前国内比较出名的系统主要包括麒麟和统信,其中麒麟包括了优麒麟、开放麒麟、银河麒麟和中标麒麟。统信则包括深度deepin和统信UOS,而统信UOS的版本还包括了A版、E版和D版。这么多版本到底有什么区别?需要怎么选择呢?1、桌面级系统以上系统归根到底都是基于debain基础上(包括最近几年占比较高的UBUNTU系统)开发的而来,可见debain在桌面级系统中的地位。它们都基于debain的好处:可以减少开发者系统切换的学习成本,尤其是从UBUNTU系统切换到麒麟系统或者统信OS;
2025-08-13 12:04:29
167
转载 Linux系统结构
1)Linux is not Unix(名称)2)Version 7 Unix ------闭源4)(芬兰)Linus Benedict Torvalds:GNU/Linux(使用大量的GNU工具集)5)Unix-like systems (类似)6)商业/开源;硬件兼容性。
2025-08-13 12:02:41
13
转载 安装桌面版 openEuler
openEuler没有桌面版本,但是您仍然可以在桌面上安装它。所以,你愿意尝试 openEuler Linux 发行版,这是一个由国内一些大公司支持的开源项目,旨在为开发人员打造一个统一的操作系统。如果你使用过 Fedora、CentOS 或 Red Hat 方面的任何其他发行版,它对你来说应该不会太陌生(他基于CentOS 8开发)。让我们在本教程中看看如何安装它。
2025-08-13 11:10:57
29
转载 U盘启动盘制作-Ventoy
简单来说,Ventoy是一个制作可启动U盘的开源工具。有了Ventoy你就无需反复地格式化U盘,你只需要把 ISO/WIM/IMG/VHD(x)/EFI 等类型的文件直接拷贝到U盘里面就可以启动了,无需其他操作。你可以一次性拷贝很多个不同类型的镜像文件,Ventoy 会在启动时显示一个菜单来供你进行选择 (参见你还可以在 Ventoy 的界面中直接浏览并启动本地硬盘中的 ISO/WIM/IMG/VHD(x)/EFI 等类型的文件。
2025-08-13 09:30:26
47
转载 统信服务器操作系统UOS V20 各个版本说明
统信的 UOS 操作系统提供了多个版本,这些版本基于不同的操作系统进行开发和优化,以满足不同的用户需求。比如,UOS 的 A 版就是基于 OpenAnolis 的,而 UOS 的 E 版则是基于 OpenEuler 的。是由中国的开源社区发起并维护的一个开源项目,是一款基于 Linux 的开源、免费的操作系统。用户可以根据自己的需求选择合适的版本。如果你想用欧拉的一些特性,特别是如果你的服务器是基于鲲鹏处理器的,那么选e版。华为赞助并主导的一个开源项目,是一款基于 Linux 的开源、免费的操作系统。
2025-08-13 09:13:23
62
转载 FreeBSD
FreeBSD 是一种类UNIX操作系统,是经由BSD、386BSD 和 4.4BSD发展而来的Unix的一个重要分支。FreeBSD 为不同架构的计算机系统提供了不同程度的支持。并且一些原来 BSD UNIX 的开发者后来转到 FreeBSD 的开发,使得 FreeBSD 在内部结构和系统 API 上和 UNIX 有很大的兼容性。
2025-08-12 10:52:28
20
转载 银河麒麟服务器(ky10 server)arm、x86安装qemu虚拟机
使用下面的命令安装的话只能安装同构的虚拟机,如arm的就只能安装arm的;x86的就只能安装x86的等待安装完成。
2025-08-11 17:43:18
76
转载 在Windows X86上使用QEMU安装openEuler aarch64
通过本指南,你应该已经成功在Windows上使用QEMU运行了openEuler的aarch64版本。这种方法非常适合需要在Windows环境下进行ARM架构开发和测试的场景。虽然性能可能不如原生ARM硬件,但它提供了一个方便的测试和学习环境。在Windows X86上使用QEMU安装openEuler aarch64版本的详细指南_qemu openeuler aarch64-CSDN博客。
2025-08-11 13:47:34
90
转载 在 UOS 下利用 QEMU 搭建飞腾 ARM64 的开发环境
近年来,在政府的推动下,国产操作系统(主要是统信 UOS 和麒麟 OS)以及相关软件的市场份额不断扩大。越来越多的企业和事业单位开始采用国产操作系统和软件,国产化替代进程正如火如荼地进行。目前,信创产业链上下游百花齐放,国产芯片领域更是群雄并起,如麒麟、兆芯、海光、龙芯、飞腾、申威等。作为产业链中的一环,软件开发者也面临一个普遍问题:需要适配多种硬件平台。前几天,一位客户询问我们是否提供飞腾架构统信 UOS 下的软件版本。
2025-08-11 11:26:23
42
转载 QEMU中运行 aarch64 linux 内核
如果想要节省编译时间,在执行configure命令时可以通过配置 target-list参数来选择只编译aarch64的模拟器。:启动字符界面(不启动图形界面),输出重定向到宿主机命令行,与参数 console=ttyAMA0。,可通过qemu-system-aarch64 -M virt --cpu help。:指定模拟的开发板,可通过qemu-system-aarch64 M help。上面命令会把qemu支持的所有平台的模拟器都编译出来,耗时会较长。修改配置,选中如下项目,静态编译。
2025-08-11 11:17:04
18
转载 银河麒麟/ubuntu 下安装/卸载软件包命令
Ubuntu是基于Debian的Linux系统,而Debian系统的软件是使用APT和dpkg进行管理。dpkg是"Debian Packager"的简写,是一个底层的软件包管理工具。
2025-08-08 17:15:38
41
转载 大内存时代——为什么PageSize仍不建议选择16KB或64KB
使用64KB页面可加速TLB查找,减少磁盘写入次数,提高缓存利用率,但这些优势在现代64位系统中已不明显。综上所述,大内存时代下,选择合适的PageSize配置需权衡多种因素。尽管16KB或64KB页面在特定场景中可能带来性能提升,但在现代系统中,透明大页已成为更灵活且高效的内存管理选择。通过透明大页,系统能在保留兼容性的同时,最大化利用大内存的优势,提升整体性能。1996年,盖茨在接受媒体采访时澄清了有关“640K内存”的传闻:“我虽说过一些蠢话,做过一些傻事,可这句话绝对不是我说的。
2025-08-08 08:42:17
43
转载 openEuler 24.03 LTS 特性解读 | 动态复合页
长期以来 Linux 内核中物理内存是基于 struct page 来管理的,每个 page 对象描述一个基础页(如 4K),随着当前大模型、大数据等业务大内存需求,单个系统上的内存容量可以达到 TB 级别,以 page 为单位管理内存越显低效。
2025-08-07 18:20:17
44
转载 MemAgent:当LLM学会记笔记,350万字超长文本处理难题迎刃而解
今天,我们要聊一个让所有大模型开发者都头疼的问题——。想象一下,让AI阅读一本几十万字的小说并回答一个横跨多个章节的细节问题,或者让它分析一个包含数百万行代码的整个项目。这些任务对于当前的大模型来说,几乎是不可能完成的任务。问题的根源在于Transformer架构的天生缺陷——O(n^2)的计算复杂度。这意味着上下文长度(n)每增加一倍,计算量和内存消耗就会暴增四倍。
2025-08-05 13:55:17
153
转载 上下文工程:Context Engineering爆火!唤醒大模型“心智”,AI智能体落地的关键武器来了
Claude Code 在上下文窗口使用率达到 95% 后会自动对对话轨迹进行总结,再替代注入。这种方式可以采用递归摘要、层次摘要等策略,也可以训练微调模型用于关键事件提取。
2025-08-05 12:01:56
87
转载 上下文引擎(Context Engine) - 智能体的核心基石技术分析
在人工智能的浪潮之巅,大型语言模型(LLM)无疑是那颗最耀眼的明星。从GPT系列到各类开源模型的井喷式发展,我们见证了机器在理解和生成人类语言方面取得的惊人飞跃。这些模型正在成为新一代AI应用,尤其是AI编程助手的基石。技术迭代的速度令人目不暇接,似乎一个更强大的编码专用大型语言模型永远在下一个拐角处等待着我们。然而,一个不容忽视的现实是,无论多么强大的通用LLM,其知识都来自于公开的、海量的训练数据。当面对一个企业或个人私有的、具体的代码库时,它天生就是“失忆的”。
2025-08-05 11:46:48
45
转载 MCP-Zero重塑工具调用范式:让Agent学会“主动要”,而不是被动等“喂”
MCP-Zero 像给AI Agent装上了智慧的“雷达”和高效的“物流系统”。它教会AI在需要时清晰地说出“我要什么”,然后用巧妙的分层检索迅速找到,按需取用,动态搭建解决复杂任务的“工具链”。实验结果证明,它能省下98%的算力开销,同时在几千个工具中精准定位稳定处理复杂协作。这不仅是一项技术创新,更是迈向能真正驾驭庞大工具世界的实用型AI Agent的关键一步。未来,当它与能“创造工具”的AI结合,一个自我装备、自我升级的智能体生态将不再是科幻。AI Agent的“工具自由”时代,或许就此开启!
2025-08-05 11:24:09
143
转载 大模型的推理过程
大模型的推理过程是“简单+粗暴”的,但是不少同学仍然对其过程不太清楚。本文从一个通俗的角度出发,以一些例子来帮助大家更好地理解大模型的推理过程,也顺便了解一下什么是 KVCache 技术。
2025-08-05 11:07:49
52
原创 大模型如何处理多角色(role)和多内容块(content)的提示词
您的输入会被处理为两个连续的user消息块,可能被合并为的纯文本输入。如需更精确的控制,建议合并内容到单条消息或查阅具体模型的文档。
2025-08-05 09:33:08
319
原创 提示词中上下文的位置对信息提取的影响
将文章放头部,并在指令中明确提取范围(如“前3段”或“第二章”),避免模型因输入过长而丢失重点。:对同一篇文章,分别尝试两种结构,对比提取结果的准确性和完整性。:模型会优先“聚焦”文章内容,再根据后续指令提取关键信息。2、对复杂任务或长文本,通过分隔符和分步指令优化效果。:模型先接收指令(如“提取关键信息”),再处理文章。文章较长,需确保模型充分理解上下文后再执行任务。3、通过测试验证不同结构的实际表现,灵活调整。指令复杂,需模型先明确任务目标再分析文章。1、默认将文章放头部,指令简洁明确。
2025-08-05 09:25:16
274
转载 产品级AI应用的核心:上下文工程
从提示工程到上下文工程,这不仅仅是一个技术名词的升级,更像是一种思维模式的跃迁。在上下文工程中,有记忆,有工具,有结构化的知识,有多样的智能体协同。它为模型提供了一个稳定、可靠且信息丰富的工作环境。希望今天的分享,能让你在构建自己的AI应用时,不止于打磨那一句精妙的Prompt,而是能退后一步,从系统和架构的视角,去思考如何为你的AI,构建一个真正强大的“上下文”。,它能帮助我们更加系统化的去理解和学习上下文工程,感兴趣的读者可以自行深入学习。产品级AI应用的核心:上下文工程。
2025-08-04 10:56:26
57
转载 结构化 Prompt
对一些基础简单的 Prompt 来说(比如只有一两句话的 prompt),可能在不同模型上表现差不多,但是任务难度变复杂,prompt 也相应的复杂以后,不同模型表现则会出现明显分化。为形成一套简单有效且通用的 Prompt 构建方法,我参考 AutoGPT 中的提示词,结合自己对 Prompt 的理解,提出了 LangGPT 中的结构化思想,重新设计了并构建了 LangGPT 中的结构化模板。实践中,只要能满足你的需求,能够让你又快又好的编写出高性能 Prompt,就是好的 Prompt 方法!
2025-08-01 11:59:48
55
转载 提示词教程
在与ChatGPT的互动中,课程学习提示就是设计一系列的任务,从简单的开始,然后逐渐增加难度,帮助模型逐步学习并掌握更复杂的技能。在与ChatGPT的互动中,控制生成提示就是给出具体的指示,让模型按照你的要求来生成文本,无论是遵循特定的结构、使用特定的词汇,还是满足某些特定的内容标准。在与ChatGPT的互动中,文本分类提示就是让模型做类似的判断,它需要理解文本的内容并将其分配到正确的类别中。在与ChatGPT的互动中,情感分析提示就是让模型做同样的事情,它需要理解文本的含义并判断其中的情感倾向。
2025-08-01 11:56:31
41
转载 ChatGPT在数据情报分析领域的应用探索
我们只需要通过特定的提示词,让它输出想要的内容,再录入本地执行,获得最终的结果。对工具的使用,正是人类优越性的体现。通过这种方式,能够让初级水平的分析人员,也能轻松写出高级水平人员才能完成的“复杂的”函数命令或Python脚本、绘制出专业的数据图表。然而,尽管ChatGPT在数据分析领域具有巨大的潜力,但对于公共安全领域来说,数据大多都是涉密的,不允许被发布到互联网中。,在面对超复杂的数据分析场景, ChatGPT提供的支撑具有局限性,此时还需要借助专业的数据分析工具,比如火眼等。
2025-08-01 10:53:13
71
转载 【Agent】基于大模型进行结构化信息提取优化策略
如果有多个参考摘要,对每个参考摘要分别计算召回率,然后取最大值作为最终的ROUGE-N召回率。5、
2025-08-01 09:51:59
49
转载 使用本地大模型从论文PDF中提取结构化信息
本文探讨了利用大语言模型(LLM)从学术论文PDF中批量提取结构化信息的方法。相比传统正则表达式,LLM在灵活性、上下文理解和扩展性方面具有明显优势。文章详细介绍了工作流程:通过Ollama服务部署本地LLM模型(llama3.1),设计专业提示词模板,从PDF中提取标题、作者、摘要等关键信息并转换为JSON格式。实验以经典论文《Attention Is All You Need》为例,展示了完整的代码实现方案,包括环境配置、提示工程、异常处理和批量处理等功能。该方法为科研人员提供了高效的非结构化数据处理工
2025-07-31 17:50:05
86
转载 结构化提示词:让AI高效完成复杂任务的“编程语言”
在人工智能时代,提示词(Prompt)已成为连接人类意图与AI能力的核心媒介。,其设计过程堪比编写程序代码——通过将重复要素模块化、流程节点标准化,实现复杂任务的精准拆解与稳定输出。与传统自然语言交流不同,:如同定义函数作用域,明确AI的"身份-能力"边界:像编写算法流程,设定"目标-约束-步骤"的完整执行链:规定返回值的"格式-示例",确保结果可预期、可复用:一个精心设计的提示词可替代数十次低效对话通过固定逻辑框架消除AI输出的随机波动:模块化提示词成为可迭代的"数字资产"
2025-07-31 11:57:09
242
转载 结构化提示词Prompt方法论
结构化Prompt是一种精心设计的输入模板。结构化将信息以一种特定的格式组织起来,以便人工智能系统能够更准确地理解和处理这些信息。这种模板通常包含一系列预定义的字段和指示,用于引导AI生成特定风格或格式的输出。通过使用结构化Prompt,用户可以更有效地与AI沟通,同时AI也能够提供更准确、更符合用户需求的回答。这种模板有助于减少歧义,提高沟通的效率,并确保信息的清晰和有序。
2025-07-31 11:18:11
43
转载 Prompt老跑偏?教你写出模型真正听得懂的提示词
为什么有些人随手写个 Prompt 就能生成一款小游戏、一个运营文案,甚至一整个功能代码,而自己试了半天,结果不是风马牛不相及,就是跑偏到离谱?问题很可能就出在提示词的“”上。随便说几句话和有条理地引导模型,其实是两回事。结构化提示词,说白了就是把你想让模型干的事,拆清楚、说明白、讲具体。只有写得准,模型才听得懂、干得对。在本篇文章中,就来聊聊怎么写好结构化提示词,让大模型更乖乖按你的想法工作。本文摘自《智能体设计指南》投稿 | 机械工业出版社出品 | CSDN(ID:CSDNnews)
2025-07-31 11:04:07
62
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人