【论文分享】★★★「SOTA」小样本图神经网络分类模型 HGNN:Hybrid Graph Neural Networks for Few-Shot Learning

本文提出了一种名为HGNN的新型混合图神经网络模型,用于解决小样本图神经网络分类问题。该模型由原型图神经网络PGNN和实例图神经网络IGNN组成,分别处理类间重叠和异常值识别。实验表明,HGNN在多个数据集上实现了新的SOTA,尤其是在处理离群值和类重叠问题上表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 介绍

动机

在这里插入图片描述
现行的GNN-FSL方法:

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值