- 题目:Hybrid Graph Neural Networks for Few-Shot Learning
- 链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9437852&tag=1
- 源码:https://github.com/TianyuanYu/HGNN.
- 会议:AAAI(CCF-A)
- 时间:2021.12🔥
- 机构:国防科技大学
- 摘要:本文提出了一种新的混合GNN (HGNN)模型,该模型由两个GNN组成,一个PGNN和一个IGNN。IGNN通过实例级消息传递专注于异常值识别和中和(离群值)。PGNN在类原型级操作,以确保不同的类在GNN适应的嵌入空间中可以很好地分离(类间重叠)
- 其他:本文的GNN与之前的GNN之间的关键区别是本文的GNN不包含标签信息。
1. 介绍
动机
现行的GNN-FSL方法: