机器学习-西瓜书 第一章 绪论

目录

1. 机器学习定义

2. 基本术语

2.1 数据相关术语

2.2 学习过程术语

3. 归纳与演绎

4. 归纳偏好与NFL定理

4.1 归纳偏好

4.2 没有免费午餐定理(NFL)

5 机器学习发展历程

1. 发展脉络与核心阶段

2. 技术流派演变


1. 机器学习定义

  • 核心定义

    机器学习是研究如何通过计算手段,利用经验(数据)改善系统自身的性能,从而在未知数据上做出有效预测或决策的学科。

  • 关键理解

    • 数据驱动:从数据中自动学习规律(模型),而非依赖人工规则
    • 传统编程 vs 机器学习:
      • 传统编程:输入规则+数据 → 输出结果
      • 机器学习:输入数据+结果 → 输出规则(模型)

2. 基本术语

2.1 数据相关术语
  • 数据集 (Data Set):样本的集合,分为训练集和测试集
  • 样本/示例 (Sample/Instance):数据集中的单个数据记录
  • 属性/特征 (Attribute/Feature):描述样本的某个维度,属性的取值成为属性值
  • 属性空间/样本空间/输入空间 (Attribute Space):所有特征张成的空间,空间中的每个点对应一个坐标向量,因此我们通常把一个示例成为特征向量
  • 假设:学习到的某个规律
  • 真相/真实:潜在的规律
  • 标记 (Label):样本的预测目标值
  • 样例 (Example):带标记的样本(特征向量 + 标记),即(x, y)
  • 标记空间/输出空间:标记构成的空间集合
2.2 学习过程术语
  • 假设空间 (Hypothesis Space):所有可能模型的集合
    • 合取式假设:如"色泽=青绿 ∧ 根蒂=蜷缩 → 好瓜"
  • 版本空间 (Version Space):与训练数据一致的所有假设的集合
  • 学习目标:从假设空间中找到一个最优模型f: \mathcal{X} \rightarrow \mathcal{Y}

3. 归纳与演绎

推理类型定义机器学习中的应用
归纳从特殊到一般,从样例中总结规律学习过程:从训练数据归纳模型f
演绎从一般到特殊,利用规则推导结论模型应用:用学到的f预测新样本结果

4. 归纳偏好与NFL定理

4.1 归纳偏好
  • 定义:算法对某类假设的偏好(如偏好简单模型)

  • 奥卡姆剃刀:

    若有多个假设与观察一致,则选最简单的

  • 局限性:"简单性"的定义依赖于具体问题

4.2 没有免费午餐定理(NFL)
  • 数学表达:

  • 核心结论:

    • 脱离具体问题,讨论算法优劣无意义
    • 算法设计需结合问题先验知识
  • NFL定理公式推导

    1. 问题设定与符号定义

      • 样本空间:\mathcal{X}(离散)

      • 假设空间:\mathcal{H}(离散)

      • 真实目标函数:f: \mathcal{X} \rightarrow {0,1}

      • 学习算法:\Omega_n

    2. 训练集外误差定义

      算法\Omega_n在训练集外的样本上的期望误差:

      
      

      解释:

      • \sum_{x \in \mathcal{X}-X} P(x): 样本外样例概率

      • \mathbb{I}(h(x) \neq f(x)): 指示函数,内容等式成立返回0,不成立返回1

      • P(h|X, \Omega_n):\Omega_n在训练集X上产生目标假设h的概率

      • E_{\text{ote}}(\Omega_n | X, f): \Omega_n在目标函数f和训练集X外产生期望误差,其中下表ote表示Out-of-Training Error缩写

  1. 对所有可能的f求和

    总误差表达式:

  1. NFL定理核心结论

    对任意两个算法\Omega_a\Omega_b

  1. 定理的局限与启示

    • 局限性:依赖"所有问题均匀分布"的假设

    • 指导意义:

      • 算法设计需结合具体问题的先验知识

      • 脱离问题背景讨论算法优劣无意义

参考:周志华《机器学习》第一章第9页

5 机器学习发展历程

1. 发展脉络与核心阶段
时期核心思想代表技术/人物关键进展与挑战
1950s-1970s【推理期】符号主义与逻辑推理逻辑理论家、感知机早期AI依赖符号逻辑推理,感知机受限于线性分类
1980s-1990s【知识期】知识工程与符号学习专家系统、决策树、ILP专家系统遭遇"知识工程瓶颈",决策树成为主流
1990s-2000s【学习期】统计学习SVM、核方法统计学习理论奠定基础,SVM表现优异
2010s至今【深度学习】深度学习与大数据时代CNN、RNN、强化学习大数据与GPU算力推动深度学习爆发
2. 技术流派演变
  1. 符号主义(1950s-1980s):

    • 核心:基于逻辑规则与符号表示
    • 局限:难以处理复杂非线性问题
  2. 连接主义(1980s复兴):

    • 核心:神经网络模拟人脑连接
    • 局限:理论薄弱,调参困难
  3. 统计学习(1990s主导):

    • 核心:基于概率与统计理论
    • 优势:理论完备,泛化能力强
  4. 深度学习(2010s至今):

    • 核心:多层神经网络自动提取特征
    • 驱动因素:大数据、GPU算力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GawynKing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值