在 AI 技术飞速发展的今天,大模型已成为推动创新的核心力量。而 DeepSeek-R1 作为国产大模型的杰出代表,以其强大的推理能力和广泛的应用潜力,正在引领一场AI技术的变革。GitCode 开源社区紧跟时代步伐,正式推出国产大模型专区,首批引入 DeepSeek-R1 系列蒸馏模型,为开发者提供免费体验和多样化选择,助力AI技术的普惠与发展。
春节期间,DeepSeek 所引发的蝴蝶效应让代码君尤其期待 2025 年 AI 的变化。今天,代码君就来为大家详细解读 DeepSeek 的“全家桶”,看看它如何为我们的生活和工作带来新的可能性,又将如何塑造未来 AI 的新图景。
DeepSeek-R1:强化学习驱动的推理巨头
DeepSeek R1 是 DeepSeek 团队基于大规模强化学习训练的推理模型,核心亮点在于通过规则驱动的强化学习方法,实现了在大规模训练中的有效扩展,在有限的算力下复现了 OpenAI o1 级别的推理能力。这一技术突破不仅降低了 AI 发展的技术门槛,更为算力受限的研究团队提供了新的可能性。
训练过程与技术架构
DeepSeek R1 的训练过程分为两个阶段。首先,在 DeepSeek V3 基座模型上生成包含深度推理能力的监督微调数据,结合通用 SFT 数据进行微调;然后进一步通过强化学习训练,使模型具备更强的泛化能力。这种独特的训练方式,使 DeepSeek R1 在数学、代码等领域表现优异,还能泛化到更复杂的推理任务,如写作、逻辑推理等,极大地增强了大模型的实际应用价值。
从技术角度来看,DeepSeek R1 采用了基于 Transformer 架构的创新设计,并融合了强化学习以及多阶段训练策略。这种独特的技术组合,在推理能力上实现了质的飞跃,达到了前所未有的高度。例如,它能够支持长序列的处理,精准地理解和解析复杂的上下文信息,为应对各类复杂任务提供了坚实而有力的支持。
性能表现与应用前景
在性能上,DeepSeek R1 的表现尤为出色。在数学、编程等任务中,它的表现优于 OpenAI 的 o1-1217,而且训练成本低,预训练仅需 557.6 万美元,在 2048 块英伟达 H800 GPU 集群上运行 55 天即可完成。无论是在数学推理、编程,还是自然语言处理等诸多领域,DeepSeek R1 都取得了非常令人瞩目的成就。
DeepSeek R1-Zero:开启推理模型的纯 RL 时代
DeepSeek-R1-Zero 是 DeepSeek 团队开发的第一代推理模型,通过大规模强化学习(RL)进行训练,完全跳过了传统的监督微调(SFT)步骤。这种独特的训练方式使 R1-Zero 在推理能力上表现出色,尤其是在数学、代码生成和 STEM 相关任务中,能够高效解析复杂信息并生成高质量的推理结果。然而,R1-Zero 也面临一些挑战,比如存在语言混杂和格式混乱的问题。尽管如此,R1-Zero 的开源特性和强大的推理能力及应用价值,仍为 AI 领域的进一步发展提供了新的思路和方向。
总的来说,DeepSeek R1 及 R1-Zero,凭借其卓越的技术架构、非凡的性能表现以及广阔的应用前景,正在 AI 领域展现出巨大的潜力与价值,为推动 AI 技术的发展贡献着重要的力量。
● GitCode 直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Zero
DeepSeek-R1与V3:技术传承与创新
DeepSeek-R1与DeepSeek-V3之间存在着紧密的技术联系。DeepSeek-V3是DeepSeek团队推出的一个具有创新性技术的模型,核心技术包括模型压缩、专家并行训练、FP8混合精度训练等。这些技术使DeepSeek-V3能够在相对较低的算力成本下达到世界级的性能表现。
DeepSeek-R1在DeepSeek-V3的基础上,更进一步优化了训练方法和模型结构。通过在V3基座模型上进行深度推理能力的训练,并结合大规模强化学习,DeepSeek-R1实现了更强的推理能力和泛化能力。这种技术传承与创新的关系,使得DeepSeek-R1在保持高性能的同时,具备了更广泛的应用潜力。
DeepSeek-V3:创新技术引领未来
DeepSeek-V3作为DeepSeek团队的另一款重要模型,核心技术包括MoE(Mixture of Experts)等稀疏激活方法,提升了算力利用率。此外,V3还采用了模型压缩、专家并行训练、FP8混合精度训练等技术,使模型在训练和推理过程中更加高效。
DeepSeek-V3的成功为AI领域提供了重要启示,未来AI发展可能聚焦在更高效人工智能架构、计算系统的智能化以及AI在多领域的广谱化应用等方向。这些趋势将推动AI技术向更高效、更普惠的方向发展,为各行各业带来更多的创新机遇。
● GitCode 直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-V3
DeepSeek-R1蒸馏模型:轻量化与高性能的完美结合
DeepSeek-R1蒸馏模型通过知识蒸馏技术,将DeepSeek-R1的强大推理能力迁移到更小的模型中,实现了轻量化与高性能的完美结合。这些蒸馏模型在保持高推理速度的同时,兼顾了本地部署的灵活性与低成本需求,为开发者提供了多样化的AI工具选择。
DeepSeek-R1-Distill-Qwen-1.5B
轻量高效,端侧部署利器
DeepSeek-R1-Distill-Qwen-1.5B 是基于 Qwen2.5-Math-1.5B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在多个基准测试中展现出不错的性能。作为一个轻量级模型,在 MATH-500 上达到了 83.9% 的准确率,在 AIME 2024 上达到了 28.9% 的通过率,在 CodeForces 上获得了 954 的评分,显示出超出其参数规模的推理能力。
● 核心优势:仅 1.5B 参数,在保持高推理速度的同时,通过知识蒸馏技术继承了 Qwen 大模型的核心能力,支持流畅的中英文对话与基础代码生成。
● 适用场景:移动端/嵌入式设备部署、实时交互应用、低资源环境下的 AI 助手。
● GitCode 直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-7B
均衡性能,开发者首选
DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。
● 核心优势:7B 参数规模,在通用任务(文本生成、代码补全、逻辑推理)中表现优异,资源消耗与性能达到最佳平衡。
● 特色功能:支持长文本理解(最高 16K 上下文窗口),适配企业级应用与复杂场景开发。
● GitCode 直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Llama-8B
多语言专家,国际化场景优选
DeepSeek-R1-Distill-Llama-8B 是基于 Llama-3.1-8B 开发的蒸馏模型。该模型使用 DeepSeek-R1 生成的样本进行微调,展现出优秀的推理能力。在多个基准测试中表现不俗,其中在 MATH-500 上达到了 89.1% 的准确率,在 AIME 2024 上达到了 50.4% 的通过率,在 CodeForces 上获得了 1205 的评分,作为 8B 规模的模型展示了较强的数学和编程能力。
● 核心优势:基于 Llama 架构优化,强化多语言处理能力(尤其英语与代码),适合国际化团队与跨语言开发需求。
● 典型用例:技术文档翻译、全球化客服系统、开源社区多语言支持。
● GitCode直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
DeepSeek-R1-Distill-Qwen-14B
顶尖性能,挑战复杂任务
DeepSeek-R1-Distill-Qwen-14B 是基于 Qwen2.5-14B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 93.9% 的准确率,在 AIME 2024 上达到了 69.7% 的通过率,在 CodeForces 上获得了 1481 的评分,显示出在数学和编程领域的强大实力。
● 核心优势:14B 参数规模,专为高难度任务设计(如复杂代码生成、学术论文摘要、多轮逻辑推理),性能接近原版 Qwen-72B,推理效率提升 40%+。
● 推荐场景:科研辅助、金融分析、大规模自动化开发。
● GitCode直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
DeepSeek-R1-Distill-Qwen-32B
推理专家,性能卓越
DeepSeek-R1-Distill-Qwen-32B 是基于 Qwen2.5-32B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,在数学、编程和推理等多个领域展现出卓越的性能。在 AIME 2024、MATH-500、GPQA Diamond 等多个基准测试中都取得了优异成绩,其中在 MATH-500 上达到了 94.3% 的准确率,展现出强大的数学推理能力。
● 核心优势:32B 参数规模,推理能力接近甚至超越某些更大的模型,性能卓越,适合处理复杂的推理任务。
● 适用场景:高难度学术研究、复杂系统开发、专业领域问题解决等。
● GitCode直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
DeepSeek-R1-Distill-Llama-70B
超大模型,多任务全能
DeepSeek-R1-Distill-Llama-70B 是基于 Llama-3.3-70B-Instruct 经过蒸馏训练得到的模型。该模型是 DeepSeek-R1 系列的一部分,通过使用 DeepSeek-R1 生成的样本进行微调,在数学、编程和推理等多个领域展现出优秀的性能。模型在 AIME 2024、MATH-500、GPQA Diamond 等多个基准测试中都取得了优异的成绩,显示出强大的推理能力。
● 核心优势:70B 参数规模,推理能力强大,支持多种任务,包括复杂问答、代码生成等。
● 适用场景:大规模企业级应用、多领域任务处理、复杂场景开发。
● GitCode直达:
https://gitcode.com/hf_mirrors/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
为什么选择 GitCode 国产模型专区?
● 全链路国产化:模型基于国产算力(如昇腾 GPU)优化,从芯片到框架实现自主可控;
● 开源与商用友好:遵循 MIT 协议,支持二次开发与商业应用,无授权限制;
● 社区生态支持:GitCode 提供详实的文档、案例及开发者论坛,助力快速解决部署难题。
开启AI普惠时代
GitCode 国产模型专区的上线及 DeepSeek 全家桶的引入,标志着 GitCode 在推动 AI 技术民主化进程中迈出关键一步。无论是个人开发者探索创新应用,还是企业构建私有化 AI 服务,这些模型均能提供高性价比的解决方案。点击文末阅读原文链接立即访问 GitCode 国产大模型专区,下载模型并参与社区贡献,共同塑造开源AI的未来!