# # SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import argparse import numpy as np import torch from PIL import Image from infer import TensorRTInfer from image_batcher import ImageBatcher try: from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.evaluation import COCOEvaluator from detectron2.structures import Instances, Boxes, ROIMasks except ImportError: print("Could not import Detectron 2 modules. Maybe you did not install Detectron 2") print( "Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md" ) sys.exit(1) def build_evaluator(dataset_name): """ Create evaluator for a COCO dataset. Currently only Mask R-CNN is supported, dataset of interest is COCO, so only COCOEvaluator is implemented. """ evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["coco"]: return COCOEvaluator(dataset_name) else: raise NotImplementedError("Evaluator type is not supported") def setup(config_file, weights): """ Create config and perform basic setup. """ cfg = get_cfg() cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHTS", weights]) cfg.freeze() return cfg def main(args): # Set up Detectron 2 config and build evaluator. cfg = setup(args.det2_config, args.det2_weights) dataset_name = cfg.DATASETS.TEST[0] evaluator = build_evaluator(dataset_name) evaluator.reset() trt_infer = TensorRTInfer(args.engine) batcher = ImageBatcher( args.input, *trt_infer.input_spec(), config_file=args.det2_config ) for batch, images, scales in batcher.get_batch(): print( "Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r", ) detections = trt_infer.infer(batch, scales, args.nms_threshold) for i in range(len(images)): # Get inference image resolution. infer_im = Image.open(images[i]) im_width, im_height = infer_im.size pred_boxes = [] scores = [] pred_classes = [] # Number of detections. num_instances = len(detections[i]) # Reserve numpy array to hold all mask predictions per image. pred_masks = np.empty((num_instances, 28, 28), dtype=np.float32) # Image ID, required for Detectron 2 evaluations. source_id = int(os.path.splitext(os.path.basename(images[i]))[0]) # Loop over every single detection. for n in range(num_instances): det = detections[i][n] # Append box coordinates data. pred_boxes.append([det["ymin"], det["xmin"], det["ymax"], det["xmax"]]) # Append score. scores.append(det["score"]) # Append class. pred_classes.append(det["class"]) # Append mask. pred_masks[n] = det["mask"] # Create new Instances object required for Detectron 2 evalutions and add: # boxes, scores, pred_classes, pred_masks. image_shape = (im_height, im_width) instances = Instances(image_shape) instances.pred_boxes = Boxes(pred_boxes) instances.scores = torch.tensor(scores) instances.pred_classes = torch.tensor(pred_classes) roi_masks = ROIMasks(torch.tensor(pred_masks)) instances.pred_masks = roi_masks.to_bitmasks( instances.pred_boxes, im_height, im_width, args.iou_threshold ).tensor # Process evaluations per image. image_dict = [{"instances": instances}] input_dict = [{"image_id": source_id}] evaluator.process(input_dict, image_dict) # Final evaluations, generation of mAP accuracy performance. evaluator.evaluate() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with.") parser.add_argument( "-i", "--input", help="The input to infer, either a single image path, or a directory of images.", ) parser.add_argument( "-c", "--det2_config", help="The Detectron 2 config file (.yaml) for the model", type=str, ) parser.add_argument( "-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str ) parser.add_argument( "-t", "--nms_threshold", type=float, help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.", ) parser.add_argument( "--iou_threshold", default=0.5, type=float, help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0.", ) args = parser.parse_args() if not all([args.engine, args.input, args.det2_config, args.det2_weights]): parser.print_help() print( "\nThese arguments are required: --engine --input --det2_config and --det2_weights" ) sys.exit(1) main(args)