@@ -48,14 +48,14 @@ representing text.
48
48
49
49
Here is an example of document with text provided as a string:
50
50
51
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
51
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
52
52
:language: python
53
53
:start-after: [START howto_operator_gcp_natural_language_document_text]
54
54
:end-before: [END howto_operator_gcp_natural_language_document_text]
55
55
56
56
In addition to supplying string, a document can refer to content stored in Google Cloud Storage.
57
57
58
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
58
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
59
59
:language: python
60
60
:start-after: [START howto_operator_gcp_natural_language_document_gcs]
61
61
:end-before: [END howto_operator_gcp_natural_language_document_gcs]
@@ -68,20 +68,20 @@ Analyzing Entities
68
68
Entity Analysis inspects the given text for known entities (proper nouns such as
69
69
public figures, landmarks, etc.), and returns information about those entities.
70
70
Entity analysis is performed with the
71
- :class: `~airflow.gcp .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator ` operator.
71
+ :class: `~airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator ` operator.
72
72
73
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
73
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
74
74
:language: python
75
75
:dedent: 4
76
76
:start-after: [START howto_operator_gcp_natural_language_analyze_entities]
77
77
:end-before: [END howto_operator_gcp_natural_language_analyze_entities]
78
78
79
79
You can use :ref: `Jinja templating <jinja-templating >` with
80
- :template-fields: `airflow.gcp .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator `
80
+ :template-fields: `airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator `
81
81
parameters which allows you to dynamically determine values. The result is saved to :ref: `XCom <concepts:xcom >`, which allows it
82
82
to be used by other operators.
83
83
84
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
84
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
85
85
:language: python
86
86
:dedent: 4
87
87
:start-after: [START howto_operator_gcp_natural_language_analyze_entities_result]
@@ -95,21 +95,21 @@ Analyzing Entity Sentiment
95
95
Sentiment Analysis inspects the given text and identifies the prevailing
96
96
emotional opinion within the text, especially to determine a writer's attitude
97
97
as positive, negative, or neutral. Sentiment analysis is performed through
98
- the :class: `~airflow.gcp .operators.natural_language.CloudLanguageAnalyzeEntitySentimentOperator `
98
+ the :class: `~airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeEntitySentimentOperator `
99
99
operator.
100
100
101
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
101
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
102
102
:language: python
103
103
:dedent: 4
104
104
:start-after: [START howto_operator_gcp_natural_language_analyze_entity_sentiment]
105
105
:end-before: [END howto_operator_gcp_natural_language_analyze_entity_sentiment]
106
106
107
107
You can use :ref: `Jinja templating <jinja-templating >` with
108
- :template-fields: `airflow.gcp .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator `
108
+ :template-fields: `airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeEntitiesOperator `
109
109
parameters which allows you to dynamically determine values. The result is saved to :ref: `XCom <concepts:xcom >`, which allows it
110
110
to be used by other operators.
111
111
112
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
112
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
113
113
:language: python
114
114
:dedent: 4
115
115
:start-after: [START howto_operator_gcp_natural_language_analyze_entity_sentiment_result]
@@ -124,21 +124,21 @@ Sentiment Analysis inspects the given text and identifies the prevailing
124
124
emotional opinion within the text, especially to determine a writer's
125
125
attitude as positive, negative, or neutral. Sentiment analysis is performed
126
126
through the
127
- :class: `~airflow.gcp .operators.natural_language.CloudLanguageAnalyzeSentimentOperator `
127
+ :class: `~airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeSentimentOperator `
128
128
operator.
129
129
130
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
130
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
131
131
:language: python
132
132
:dedent: 4
133
133
:start-after: [START howto_operator_gcp_natural_language_analyze_sentiment]
134
134
:end-before: [END howto_operator_gcp_natural_language_analyze_sentiment]
135
135
136
136
You can use :ref: `Jinja templating <jinja-templating >` with
137
- :template-fields: `airflow.gcp .operators.natural_language.CloudLanguageAnalyzeSentimentOperator `
137
+ :template-fields: `airflow.providers.google.cloud .operators.natural_language.CloudLanguageAnalyzeSentimentOperator `
138
138
parameters which allows you to dynamically determine values. The result is saved to :ref: `XCom <concepts:xcom >`, which allows it
139
139
to be used by other operators.
140
140
141
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
141
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
142
142
:language: python
143
143
:dedent: 4
144
144
:start-after: [START howto_operator_gcp_natural_language_analyze_sentiment_result]
@@ -152,21 +152,21 @@ Classifying Content
152
152
Content Classification analyzes a document and returns a list of content
153
153
categories that apply to the text found in the document. To classify the
154
154
content in a document, use the
155
- :class: `~airflow.gcp .operators.natural_language.CloudLanguageClassifyTextOperator `
155
+ :class: `~airflow.providers.google.cloud .operators.natural_language.CloudLanguageClassifyTextOperator `
156
156
operator.
157
157
158
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
158
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
159
159
:language: python
160
160
:dedent: 4
161
161
:start-after: [START howto_operator_gcp_natural_language_analyze_classify_text]
162
162
:end-before: [END howto_operator_gcp_natural_language_analyze_classify_text]
163
163
164
164
You can use :ref: `Jinja templating <jinja-templating >` with
165
- :template-fields: `airflow.gcp .operators.natural_language.CloudLanguageClassifyTextOperator `
165
+ :template-fields: `airflow.providers.google.cloud .operators.natural_language.CloudLanguageClassifyTextOperator `
166
166
parameters which allows you to dynamically determine values. The result is saved to :ref: `XCom <concepts:xcom >`, which allows it
167
167
to be used by other operators.
168
168
169
- .. exampleinclude :: ../../../../airflow/gcp /example_dags/example_natural_language.py
169
+ .. exampleinclude :: ../../../../airflow/providers/google/cloud /example_dags/example_natural_language.py
170
170
:language: python
171
171
:dedent: 4
172
172
:start-after: [START howto_operator_gcp_natural_language_analyze_classify_text_result]
0 commit comments