-
Notifications
You must be signed in to change notification settings - Fork 28.5k
/
Copy path_typing.pyi
87 lines (75 loc) · 2.62 KB
/
_typing.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Tuple,
TypeVar,
Union,
)
from typing_extensions import Literal, Protocol
import datetime
import decimal
import pstats
from pyspark._typing import PrimitiveType
from pyspark.profiler import CodeMapDict
import pyspark.sql.types
from pyspark.sql.column import Column
from pyspark.sql.tvf_argument import TableValuedFunctionArgument
ColumnOrName = Union[Column, str]
TVFArgumentOrName = Union[TableValuedFunctionArgument, str]
ColumnOrNameOrOrdinal = Union[Column, str, int]
DecimalLiteral = decimal.Decimal
DateTimeLiteral = Union[datetime.datetime, datetime.date]
LiteralType = PrimitiveType
AtomicDataTypeOrString = Union[pyspark.sql.types.AtomicType, str]
DataTypeOrString = Union[pyspark.sql.types.DataType, str]
OptionalPrimitiveType = Optional[PrimitiveType]
AtomicValue = TypeVar(
"AtomicValue",
datetime.datetime,
datetime.date,
decimal.Decimal,
bool,
str,
int,
float,
)
RowLike = TypeVar("RowLike", List[Any], Tuple[Any, ...], pyspark.sql.types.Row)
SQLBatchedUDFType = Literal[100]
SQLArrowBatchedUDFType = Literal[101]
SQLTableUDFType = Literal[300]
SQLArrowTableUDFType = Literal[301]
class SupportsOpen(Protocol):
def open(self, partition_id: int, epoch_id: int) -> bool: ...
class SupportsProcess(Protocol):
def process(self, row: pyspark.sql.types.Row) -> None: ...
class SupportsClose(Protocol):
def close(self, error: Exception) -> None: ...
class UserDefinedFunctionLike(Protocol):
func: Callable[..., Any]
evalType: int
deterministic: bool
@property
def returnType(self) -> pyspark.sql.types.DataType: ...
def __call__(self, *args: ColumnOrName) -> Column: ...
def asNondeterministic(self) -> UserDefinedFunctionLike: ...
ProfileResults = Dict[int, Tuple[Optional[pstats.Stats], Optional[CodeMapDict]]]