-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathprepare_test_libs.py
65 lines (54 loc) · 2.3 KB
/
prepare_test_libs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Prepare test library for standalone wasm runtime test.
import os
import tvm
from tvm import te
from tvm.contrib import tvmjs
from tvm import relax
from tvm.script import relax as R
def prepare_relax_lib(base_path):
pipeline = relax.get_pipeline()
@tvm.script.ir_module
class Mod:
@R.function
def main(x: R.Tensor(["n"], "float32"), y: R.Tensor(["n"], "float32")):
lv0 = R.add(x, y)
return lv0
target = tvm.target.Target("llvm -mtriple=wasm32-unknown-unknown-wasm")
mod = pipeline(Mod)
ex = relax.build(mod, target)
wasm_path = os.path.join(base_path, "test_relax.wasm")
ex.export_library(wasm_path, fcompile=tvmjs.create_tvmjs_wasm)
def prepare_tir_lib(base_path):
target = "llvm -mtriple=wasm32-unknown-unknown-wasm"
if not tvm.runtime.enabled(target):
raise RuntimeError("Target %s is not enbaled" % target)
n = te.var("n")
A = te.placeholder((n,), name="A")
B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B")
mod = tvm.IRModule.from_expr(
te.create_prim_func([A, B]).with_attr("global_symbol", "add_one")
).with_attr("system_lib_prefix", "")
fadd = tvm.build(mod, target)
wasm_path = os.path.join(base_path, "test_addone.wasm")
fadd.export_library(wasm_path, fcompile=tvmjs.create_tvmjs_wasm)
if __name__ == "__main__":
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
base_path = os.path.join(curr_path, "../../dist/wasm")
prepare_tir_lib(base_path)
prepare_relax_lib(base_path)