-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtext_generation.py
221 lines (186 loc) · 7.83 KB
/
text_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib
from absl.testing import absltest
media = pathlib.Path(__file__).parents[1] / "third_party"
class UnitTests(absltest.TestCase):
def test_text_gen_text_only_prompt(self):
# [START text_gen_text_only_prompt]
from google import genai
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
print(response.text)
# [END text_gen_text_only_prompt]
def test_text_gen_text_only_prompt_streaming(self):
# [START text_gen_text_only_prompt_streaming]
from google import genai
client = genai.Client()
response = client.models.generate_content_stream(
model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_text_only_prompt_streaming]
def test_text_gen_multimodal_one_image_prompt(self):
# [START text_gen_multimodal_one_image_prompt]
from google import genai
import PIL.Image
client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content(
model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
print(response.text)
# [END text_gen_multimodal_one_image_prompt]
def test_text_gen_multimodal_one_image_prompt_streaming(self):
# [START text_gen_multimodal_one_image_prompt_streaming]
from google import genai
import PIL.Image
client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content_stream(
model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_multimodal_one_image_prompt_streaming]
def test_text_gen_multimodal_multi_image_prompt(self):
# [START text_gen_multimodal_multi_image_prompt]
from google import genai
import PIL.Image
client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
cajun_instrument = PIL.Image.open(media / "Cajun_instruments.jpg")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[
"What is the difference between both of these instruments?",
organ,
cajun_instrument,
],
)
print(response.text)
# [END text_gen_multimodal_multi_image_prompt]
def test_text_gen_multimodal_multi_image_prompt_streaming(self):
# [START text_gen_multimodal_multi_image_prompt_streaming]
from google import genai
import PIL.Image
client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
cajun_instrument = PIL.Image.open(media / "Cajun_instruments.jpg")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=[
"What is the difference between both of these instruments?",
organ,
cajun_instrument,
],
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_multimodal_multi_image_prompt_streaming]
def test_text_gen_multimodal_audio(self):
# [START text_gen_multimodal_audio]
from google import genai
client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Give me a summary of this audio file.", sample_audio],
)
print(response.text)
# [END text_gen_multimodal_audio]
def test_text_gen_multimodal_audio_streaming(self):
# [START text_gen_multimodal_audio_streaming]
from google import genai
client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=["Give me a summary of this audio file.", sample_audio],
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_multimodal_audio_streaming]
def test_text_gen_multimodal_video_prompt(self):
# [START text_gen_multimodal_video_prompt]
from google import genai
import time
client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")
# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
print("processing video...")
time.sleep(5)
myfile = client.files.get(name=myfile.name)
response = client.models.generate_content(
model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
print(f"{response.text=}")
# [END text_gen_multimodal_video_prompt]
def test_text_gen_multimodal_video_prompt_streaming(self):
# [START text_gen_multimodal_video_prompt_streaming]
from google import genai
import time
client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")
# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
print("processing video...")
time.sleep(5)
myfile = client.files.get(name=myfile.name)
response = client.models.generate_content_stream(
model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_multimodal_video_prompt_streaming]
def test_text_gen_multimodal_pdf(self):
# [START text_gen_multimodal_pdf]
from google import genai
client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Give me a summary of this document:", sample_pdf],
)
print(f"{response.text=}")
# [END text_gen_multimodal_pdf]
def test_text_gen_multimodal_pdf_streaming(self):
# [START text_gen_multimodal_pdf_streaming]
from google import genai
client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=["Give me a summary of this document:", sample_pdf],
)
for chunk in response:
print(chunk.text)
print("_" * 80)
# [END text_gen_multimodal_pdf_streaming]
if __name__ == "__main__":
absltest.main()