-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtext_generation_test.py
68 lines (55 loc) · 2.91 KB
/
text_generation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def test_llm_text_generation() -> None:
# Determine project id, in this case prefer the one set in the environment
# variable GOOGLE_CLOUD_PROJECT (if any)
import os
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT", "bigframes-dev")
LOCATION = "US"
# [START bigquery_dataframes_generate_text_tutorial_create_remote_model]
import bigframes
from bigframes.ml.llm import PaLM2TextGenerator
bigframes.options.bigquery.project = PROJECT_ID
bigframes.options.bigquery.location = LOCATION
model = PaLM2TextGenerator()
# [END bigquery_dataframes_generate_text_tutorial_create_remote_model]
assert model is not None
# [START bigquery_dataframes_generate_text_tutorial_perform_keyword_extraction]
import bigframes.pandas as bpd
df = bpd.read_gbq("bigquery-public-data.imdb.reviews", max_results=5)
df_prompt_prefix = "Extract the key words from the text below: "
df_prompt = df_prompt_prefix + df["review"]
# Predict using the model
df_pred = model.predict(df_prompt, temperature=0.2, max_output_tokens=100)
df_pred.peek(5)
# [END bigquery_dataframes_generate_text_tutorial_perform_keyword_extraction]
# peek() is used to show a preview of the results. If the output
# of this sample changes, also update the screenshot for the associated
# tutorial on cloud.google.com.
assert df_pred["ml_generate_text_llm_result"] is not None
assert df_pred["ml_generate_text_llm_result"].iloc[0] is not None
# [START bigquery_dataframes_generate_text_tutorial_perform_sentiment_analysis]
import bigframes.pandas as bpd
df = bpd.read_gbq("bigquery-public-data.imdb.reviews", max_results=5)
df_prompt_prefix = "perform sentiment analysis on the following text, return one the following categories: positive, negative: "
df_prompt = df_prompt_prefix + df["review"]
# Predict using the model
df_pred = model.predict(df_prompt, temperature=0.2, max_output_tokens=100)
df_pred.peek(5)
# [END bigquery_dataframes_generate_text_tutorial_perform_sentiment_analysis]
# peek() is used to show a preview of the results. If the output
# of this sample changes, also update the screenshot for the associated
# tutorial on cloud.google.com.
assert df_pred["ml_generate_text_llm_result"] is not None
assert df_pred["ml_generate_text_llm_result"].iloc[0] is not None