|
| 1 | +# Copyright 2023 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | + |
| 16 | +def test_bigquery_dataframes_explore_query_result(): |
| 17 | + import bigframes.pandas as bpd |
| 18 | + |
| 19 | + # [START bigquery_dataframes_explore_query_result] |
| 20 | + # Load data from BigQuery |
| 21 | + query_or_table = "bigquery-public-data.ml_datasets.penguins" |
| 22 | + bq_df = bpd.read_gbq(query_or_table) |
| 23 | + |
| 24 | + # Inspect one of the columns (or series) of the DataFrame: |
| 25 | + bq_df["body_mass_g"] |
| 26 | + |
| 27 | + # Compute the mean of this series: |
| 28 | + average_body_mass = bq_df["body_mass_g"].mean() |
| 29 | + print(f"average_body_mass: {average_body_mass}") |
| 30 | + |
| 31 | + # Find the heaviest species using the groupby operation to calculate the |
| 32 | + # mean body_mass_g: |
| 33 | + ( |
| 34 | + bq_df["body_mass_g"] |
| 35 | + .groupby(by=bq_df["species"]) |
| 36 | + .mean() |
| 37 | + .sort_values(ascending=False) |
| 38 | + .head(10) |
| 39 | + ) |
| 40 | + |
| 41 | + # Create the Linear Regression model |
| 42 | + from bigframes.ml.linear_model import LinearRegression |
| 43 | + |
| 44 | + # Filter down to the data we want to analyze |
| 45 | + adelie_data = bq_df[bq_df.species == "Adelie Penguin (Pygoscelis adeliae)"] |
| 46 | + |
| 47 | + # Drop the columns we don't care about |
| 48 | + adelie_data = adelie_data.drop(columns=["species"]) |
| 49 | + |
| 50 | + # Drop rows with nulls to get our training data |
| 51 | + training_data = adelie_data.dropna() |
| 52 | + |
| 53 | + # Pick feature columns and label column |
| 54 | + X = training_data[ |
| 55 | + [ |
| 56 | + "island", |
| 57 | + "culmen_length_mm", |
| 58 | + "culmen_depth_mm", |
| 59 | + "flipper_length_mm", |
| 60 | + "sex", |
| 61 | + ] |
| 62 | + ] |
| 63 | + y = training_data[["body_mass_g"]] |
| 64 | + |
| 65 | + model = LinearRegression(fit_intercept=False) |
| 66 | + model.fit(X, y) |
| 67 | + model.score(X, y) |
| 68 | + # [END bigquery_dataframes_explore_query_result] |
| 69 | + assert average_body_mass is not None |
| 70 | + assert model is not None |
0 commit comments