-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathpipeline_output.py
43 lines (33 loc) · 1.54 KB
/
pipeline_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...utils import BaseOutput
@dataclass
class LEditsPPDiffusionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or
`None` if safety checking could not be performed.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: Optional[List[bool]]
@dataclass
class LEditsPPInversionPipelineOutput(BaseOutput):
"""
Output class for LEdits++ Diffusion pipelines.
Args:
input_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape `
(batch_size, height, width, num_channels)`.
vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`)
List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape
` (batch_size, height, width, num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray]