-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathbrownboost.py
64 lines (51 loc) · 2.36 KB
/
brownboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Brownboost example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "brownboost_train.csv"
testfile = data_path / "brownboost_test.csv"
# Configure a brownboost training object
train_algo = d4p.brownboost_training()
# Read data. Let's have 20 independent,
# and 1 dependent variable (for each observation)
indep_data = readcsv(infile, range(20))
dep_data = readcsv(infile, range(20, 21))
# Now train/compute, the result provides the model for prediction
train_result = train_algo.compute(indep_data, dep_data)
# Now let's do some prediction
predict_algo = d4p.brownboost_prediction()
# read test data (with same #features)
pdata = readcsv(testfile, range(20))
# now predict using the model from the training above
predict_result = predict_algo.compute(pdata, train_result.model)
# The prediction result provides prediction
assert predict_result.prediction.shape == (pdata.shape[0], dep_data.shape[1])
ptdata = np.loadtxt(testfile, usecols=range(20, 21), delimiter=",", ndmin=2)
assert np.allclose(predict_result.prediction, ptdata)
return (train_result, predict_result, ptdata)
if __name__ == "__main__":
(train_result, predict_result, ptdata) = main()
print("\nGround truth (first 20 observations):\n", ptdata[:20])
print(
"Brownboost classification results: (first 20 observations):\n",
predict_result.prediction[:20],
)
print("All looks good!")