-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathcovariance.py
54 lines (41 loc) · 1.78 KB
/
covariance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py covariance example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv, method="defaultDense"):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "covcormoments_dense.csv"
# configure a covariance object
algo = d4p.covariance()
# let's provide a file directly, not a table/array
result1 = algo.compute(str(infile))
# We can also load the data ourselfs and provide the numpy array
algo = d4p.covariance(method=method)
data = readcsv(infile)
_ = algo.compute(data)
# covariance result objects provide correlation, covariance and mean
assert np.allclose(result1.covariance, result1.covariance)
assert np.allclose(result1.mean, result1.mean)
assert np.allclose(result1.correlation, result1.correlation)
return result1
if __name__ == "__main__":
res = main()
print("Covariance matrix:\n", res.covariance)
print("Mean vector:\n", res.mean)
print("All looks good!")