-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathdecision_tree_regression_traverse.py
56 lines (47 loc) · 2.05 KB
/
decision_tree_regression_traverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Decision Tree Regression example for shared memory systems
import math
from decision_tree_regression import main as dt_regression
import daal4py as d4p
def printTree(nodes, values):
def printNodes(node_id, nodes, values, level):
node = nodes[node_id]
value = values[node_id]
if not math.isnan(node["threshold"]):
print(
" " * level + "Level " + str(level) + ": Feature ="
" " + str(node["feature"]) + ", Threshold = " + str(node["threshold"])
)
else:
print(
" " * level + "Level " + str(level) + ", Value ="
" " + str(value).replace(" ", "")
)
if node["left_child"] != -1:
printNodes(node["left_child"], nodes, values, level + 1)
if node["right_child"] != -1:
printNodes(node["right_child"], nodes, values, level + 1)
printNodes(0, nodes, values, 0)
if __name__ == "__main__":
# First get our result and model
(train_result, _, _) = dt_regression()
# Retrieve Tree State for tree as encoded in sklearn.ensamble.tree_.Tree
treeId = 0
treeState = d4p.getTreeState(train_result.model, treeId, 5)
# Now let printTree traverse the TreeState
printTree(treeState.node_ar, treeState.value_ar)
print("All looks good!")