-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathlasso_regression.py
70 lines (56 loc) · 2.64 KB
/
lasso_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Lasso Regression example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "linear_regression_train.csv"
testfile = data_path / "linear_regression_test.csv"
# Configure a Lasso regression training object
train_algo = d4p.lasso_regression_training(interceptFlag=True)
# Read data. Let's have 10 independent,
# and 2 dependent variables (for each observation)
indep_data = readcsv(infile, range(10))
dep_data = readcsv(infile, range(10, 12))
# Now train/compute, the result provides the model for prediction
train_result = train_algo.compute(indep_data, dep_data)
# Now let's do some prediction
predict_algo = d4p.lasso_regression_prediction()
# read test data (with same #features)
pdata = readcsv(testfile, range(10))
ptdata = readcsv(testfile, range(10, 12))
# now predict using the model from the training above
predict_result = predict_algo.compute(pdata, train_result.model)
# The prediction result provides prediction
assert predict_result.prediction.shape == (pdata.shape[0], dep_data.shape[1])
# the example is used in tests with the scipy.sparse matrix
# we use this trick until subtracting a sparse matrix is not supported
if hasattr(ptdata, "toarray"):
ptdata = ptdata.toarray()
# this assertion is outdated, will be fixed in next release
# assert np.square(predict_result.prediction - np.asarray(ptdata)).mean() < 2.2
return (predict_result, ptdata)
if __name__ == "__main__":
(predict_result, ptdata) = main()
print(
"\nLasso Regression prediction results: (first 10 rows):\n",
predict_result.prediction[0:10],
)
print("\nGround truth (first 10 rows):\n", ptdata[0:10])
print("All looks good!")