-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathlinear_regression_spmd.py
63 lines (53 loc) · 2.31 KB
/
linear_regression_spmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Linear Regression example for distributed memory systems; SPMD mode
# run like this:
# mpirun -n 4 python ./linreg_spmd.py
from numpy import loadtxt
import daal4py as d4p
if __name__ == "__main__":
# Initialize SPMD mode
d4p.daalinit()
# Each process gets its own data
infile = (
"./data/distributed/linear_regression_train_" + str(d4p.my_procid() + 1) + ".csv"
)
# Configure a Linear regression training object
train_algo = d4p.linear_regression_training(distributed=True)
# Read data. Let's have 10 independent,
# and 2 dependent variables (for each observation)
indep_data = loadtxt(infile, delimiter=",", usecols=range(10))
dep_data = loadtxt(infile, delimiter=",", usecols=range(10, 12))
# Now train/compute, the result provides the model for prediction
train_result = train_algo.compute(indep_data, dep_data)
# Now let's do some prediction
# It run only on a single node
if d4p.my_procid() == 0:
predict_algo = d4p.linear_regression_prediction()
# read test data (with same #features)
pdata = loadtxt(
"./data/distributed/linear_regression_test.csv",
delimiter=",",
usecols=range(10),
)
# now predict using the model from the training above
predict_result = d4p.linear_regression_prediction().compute(
pdata, train_result.model
)
# The prediction result provides prediction
assert predict_result.prediction.shape == (pdata.shape[0], dep_data.shape[1])
print("All looks good!")
d4p.daalfini()