-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathnaive_bayes.py
62 lines (49 loc) · 2.17 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Naive Bayes Classification example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv, method="defaultDense"):
# input data file
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "naivebayes_train_dense.csv"
testfile = data_path / "naivebayes_test_dense.csv"
# Configure a training object (20 classes)
talgo = d4p.multinomial_naive_bayes_training(20, method=method)
# Read data. Let's use 20 features per observation
data = readcsv(infile, range(20))
labels = readcsv(infile, range(20, 21))
tresult = talgo.compute(data, labels)
# Now let's do some prediction
palgo = d4p.multinomial_naive_bayes_prediction(20, method=method)
# read test data (with same #features)
pdata = readcsv(testfile, range(20))
plabels = readcsv(testfile, range(20, 21))
# now predict using the model from the training above
presult = palgo.compute(pdata, tresult.model)
# Prediction result provides prediction
assert presult.prediction.shape == (pdata.shape[0], 1)
return (presult, plabels)
if __name__ == "__main__":
(presult, plabels) = main()
print(
"\nNaiveBayes classification results (first 20 observations):\n",
presult.prediction[0:20],
)
print("\nGround truth (first 20 observations)\n", plabels[0:20])
print("All looks good!")