-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathnaive_bayes_spmd.py
60 lines (48 loc) · 2.16 KB
/
naive_bayes_spmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Naive Bayes Classification example for distributed memory systems; SPMD mode
# run like this:
# mpirun -n 4 python ./naive_bayes_spmd.py
from pathlib import Path
from numpy import loadtxt
import daal4py as d4p
if __name__ == "__main__":
# Initialize SPMD mode
d4p.daalinit()
# Each process gets its own data
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "naivebayes_train_dense.csv"
# Configure a training object (20 classes)
talgo = d4p.multinomial_naive_bayes_training(20, distributed=True)
# Read data. Let's use 20 features per observation
data = loadtxt(infile, delimiter=",", usecols=range(20))
labels = loadtxt(infile, delimiter=",", usecols=range(20, 21))
labels.shape = (labels.size, 1) # must be a 2d array
tresult = talgo.compute(data, labels)
# Now let's do some prediction
# It runs only on a single node
if d4p.my_procid() == 0:
palgo = d4p.multinomial_naive_bayes_prediction(20)
# read test data (with same #features)
pdata = loadtxt(
"./data/batch/naivebayes_test_dense.csv", delimiter=",", usecols=range(20)
)
# now predict using the model from the training above
presult = palgo.compute(pdata, tresult.model)
# Prediction result provides prediction
assert presult.prediction.shape == (pdata.shape[0], 1)
print("All looks good!")
d4p.daalfini()