-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathpca.py
67 lines (54 loc) · 2.38 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py PCA example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "pca_normalized.csv"
# 'normalization' is an optional parameter to PCA;
# we use z-score which could be configured differently
zscore = d4p.normalization_zscore()
# configure a PCA object
algo = d4p.pca(
resultsToCompute="mean|variance|eigenvalue",
isDeterministic=True,
normalization=zscore,
)
# let's provide a file directly, not a table/array
result1 = algo.compute(str(infile))
# We can also load the data ourselfs and provide the numpy array
data = readcsv(infile)
result2 = algo.compute(data)
# PCA result objects provide eigenvalues, eigenvectors, means and variances
assert np.allclose(result1.eigenvalues, result2.eigenvalues)
assert np.allclose(result1.eigenvectors, result2.eigenvectors)
assert np.allclose(result1.means, result2.means)
assert np.allclose(result1.variances, result2.variances)
assert result1.eigenvalues.shape == (1, data.shape[1])
assert result1.eigenvectors.shape == (data.shape[1], data.shape[1])
assert result1.means.shape == (1, data.shape[1])
assert result1.variances.shape == (1, data.shape[1])
return result1
if __name__ == "__main__":
result1 = main()
print("\nEigenvalues:\n", result1.eigenvalues)
print("\nEigenvectors:\n", result1.eigenvectors)
print("\nMeans:\n", result1.means)
print("\nVariances:\n", result1.variances)
print("All looks good!")