-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathpca_spmd.py
59 lines (49 loc) · 2.05 KB
/
pca_spmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py PCA example for distributed memory systems; SPMD mode
# run like this:
# mpirun -n 4 python ./pca_spmd.py
from pathlib import Path
from numpy import allclose, loadtxt
import daal4py as d4p
if __name__ == "__main__":
# Initialize SPMD mode
d4p.daalinit()
# Each process gets its own data
data_path = Path(__file__).parent / "data" / "distributed"
infile = data_path / f"pca_normalized_{d4p.my_procid() + 1}.csv"
# configure a PCA object to use svd instead of default correlation
algo = d4p.pca(method="svdDense", distributed=True)
# let's provide a file directly, not a table/array
result1 = algo.compute(str(infile))
# We can also load the data ourselfs and provide the numpy array
data = loadtxt(infile, delimiter=",")
result2 = algo.compute(data)
# PCA result objects provide eigenvalues, eigenvectors, means and variances
assert allclose(result1.eigenvalues, result2.eigenvalues)
assert allclose(result1.eigenvectors, result2.eigenvectors)
assert (
result1.means is None
and result2.means is None
or allclose(result1.means, result2.means)
)
assert (
result1.variances is None
and result2.variances is None
or allclose(result1.variances, result2.variances)
)
print("All looks good!")
d4p.daalfini()