-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathsaga.py
72 lines (59 loc) · 2.26 KB
/
saga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py Saga example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "XM.csv"
# Read the data, let's have 3 independent variables
data = readcsv(infile, range(1))
dep_data = readcsv(infile, range(1, 2))
nVectors = data.shape[0]
# configure a Logistic Loss object
logloss_algo = d4p.optimization_solver_logistic_loss(
numberOfTerms=nVectors,
penaltyL1=0.3,
penaltyL2=0,
interceptFlag=True,
resultsToCompute="gradient",
)
logloss_algo.setup(data, dep_data)
# configure an Saga object
lr = np.array([[0.01]], dtype=np.double)
niters = 100000
saga_algo = d4p.optimization_solver_saga(
nIterations=niters,
accuracyThreshold=1e-5,
batchSize=1,
function=logloss_algo,
learningRateSequence=lr,
optionalResultRequired=True,
)
# finally do the computation
inp = np.zeros((2, 1), dtype=np.double)
res = saga_algo.compute(inp, None)
# The Saga result provides minimum and nIterations
assert res.minimum.shape == inp.shape and res.nIterations[0][0] <= niters
assert np.allclose(res.minimum, [[-0.17663868], [0.35893627]])
return res
if __name__ == "__main__":
res = main()
print("\nMinimum:\n", res.minimum)
print("\nNumber of iterations performed:\n", res.nIterations[0][0])
print("All looks good!")