-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathsvd.py
69 lines (55 loc) · 2.33 KB
/
svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py SVD example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "svd.csv"
# configure a SVD object
algo = d4p.svd()
# let's provide a file directly, not a table/array
result1 = algo.compute(str(infile))
# We can also load the data ourselfs and provide the numpy array
algo = d4p.svd()
data = readcsv(infile, usecols=range(18), dtype=np.float32)
result2 = algo.compute(data)
# SVD result objects provide leftSingularMatrix,
# rightSingularMatrix and singularValues
assert np.allclose(result1.leftSingularMatrix, result2.leftSingularMatrix, atol=1e-07)
assert np.allclose(
result1.rightSingularMatrix, result2.rightSingularMatrix, atol=1e-07
)
assert np.allclose(result1.singularValues, result2.singularValues, atol=1e-07)
assert result1.singularValues.shape == (1, data.shape[1])
assert result1.rightSingularMatrix.shape == (data.shape[1], data.shape[1])
assert result1.leftSingularMatrix.shape == data.shape
if hasattr(data, "toarray"):
data = data.toarray() # to make the next assertion work with scipy's csr_matrix
assert np.allclose(
data,
np.matmul(
np.matmul(result1.leftSingularMatrix, np.diag(result1.singularValues[0])),
result1.rightSingularMatrix,
),
)
return (data, result1)
if __name__ == "__main__":
(_, result) = main()
print(result)
print("All looks good!")