-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathsvm.py
70 lines (55 loc) · 2.56 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# ==============================================================================
# Copyright 2014 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# daal4py SVM example for shared memory systems
from pathlib import Path
import numpy as np
from readcsv import pd_read_csv
import daal4py as d4p
def main(readcsv=pd_read_csv):
# input data file
data_path = Path(__file__).parent / "data" / "batch"
infile = data_path / "svm_two_class_train_dense.csv"
testfile = data_path / "svm_two_class_test_dense.csv"
# Configure a SVM object to use rbf kernel (and adjusting cachesize)
kern = d4p.kernel_function_linear()
# need an object that lives when creating train_algo
train_algo = d4p.svm_training(method="thunder", kernel=kern, cacheSize=600000000)
# Read data. Let's use features per observation
data = readcsv(infile, range(20))
labels = readcsv(infile, range(20, 21))
train_result = train_algo.compute(data, labels)
# Now let's do some prediction
predict_algo = d4p.svm_prediction(kernel=kern)
# read test data (with same #features)
pdata = readcsv(testfile, range(20))
plabels = readcsv(testfile, range(20, 21))
# now predict using the model from the training above
predict_result = predict_algo.compute(pdata, train_result.model)
# Prediction result provides prediction
assert predict_result.prediction.shape == (pdata.shape[0], 1)
# result of classification
decision_result = predict_result.prediction
predict_labels = np.where(decision_result >= 0, 1, -1)
return (decision_result, predict_labels, plabels)
if __name__ == "__main__":
(decision_function, predict_labels, plabels) = main()
print(
"\nSVM classification decision function (first 20 observations):\n",
decision_function[0:20],
)
print("\nSVM classification results (first 20 observations):\n", predict_labels[0:20])
print("\nGround truth (first 20 observations):\n", plabels[0:20])
print("All looks good!")