-
Notifications
You must be signed in to change notification settings - Fork 19.6k
/
Copy pathbidirectional.py
326 lines (290 loc) · 12.9 KB
/
bidirectional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import copy
from keras.src import ops
from keras.src import utils
from keras.src.api_export import keras_export
from keras.src.layers.layer import Layer
from keras.src.saving import serialization_lib
@keras_export("keras.layers.Bidirectional")
class Bidirectional(Layer):
"""Bidirectional wrapper for RNNs.
Args:
layer: `keras.layers.RNN` instance, such as
`keras.layers.LSTM` or `keras.layers.GRU`.
It could also be a `keras.layers.Layer` instance
that meets the following criteria:
1. Be a sequence-processing layer (accepts 3D+ inputs).
2. Have a `go_backwards`, `return_sequences` and `return_state`
attribute (with the same semantics as for the `RNN` class).
3. Have an `input_spec` attribute.
4. Implement serialization via `get_config()` and `from_config()`.
Note that the recommended way to create new RNN layers is to write a
custom RNN cell and use it with `keras.layers.RNN`, instead of
subclassing `keras.layers.Layer` directly.
When `return_sequences` is `True`, the output of the masked
timestep will be zero regardless of the layer's original
`zero_output_for_mask` value.
merge_mode: Mode by which outputs of the forward and backward RNNs
will be combined. One of `{"sum", "mul", "concat", "ave", None}`.
If `None`, the outputs will not be combined,
they will be returned as a list. Defaults to `"concat"`.
backward_layer: Optional `keras.layers.RNN`,
or `keras.layers.Layer` instance to be used to handle
backwards input processing.
If `backward_layer` is not provided, the layer instance passed
as the `layer` argument will be used to generate the backward layer
automatically.
Note that the provided `backward_layer` layer should have properties
matching those of the `layer` argument, in particular
it should have the same values for `stateful`, `return_states`,
`return_sequences`, etc. In addition, `backward_layer`
and `layer` should have different `go_backwards` argument values.
A `ValueError` will be raised if these requirements are not met.
Call arguments:
The call arguments for this layer are the same as those of the
wrapped RNN layer. Beware that when passing the `initial_state`
argument during the call of this layer, the first half in the
list of elements in the `initial_state` list will be passed to
the forward RNN call and the last half in the list of elements
will be passed to the backward RNN call.
Note: instantiating a `Bidirectional` layer from an existing RNN layer
instance will not reuse the weights state of the RNN layer instance -- the
`Bidirectional` layer will have freshly initialized weights.
Examples:
```python
model = Sequential([
Input(shape=(5, 10)),
Bidirectional(LSTM(10, return_sequences=True),
Bidirectional(LSTM(10)),
Dense(5, activation="softmax"),
])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# With custom backward layer
forward_layer = LSTM(10, return_sequences=True)
backward_layer = LSTM(10, activation='relu', return_sequences=True,
go_backwards=True)
model = Sequential([
Input(shape=(5, 10)),
Bidirectional(forward_layer, backward_layer=backward_layer),
Dense(5, activation="softmax"),
])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```
"""
def __init__(
self,
layer,
merge_mode="concat",
weights=None,
backward_layer=None,
**kwargs,
):
if not isinstance(layer, Layer):
raise ValueError(
"Please initialize `Bidirectional` layer with a "
f"`keras.layers.Layer` instance. Received: {layer}"
)
if backward_layer is not None and not isinstance(backward_layer, Layer):
raise ValueError(
"`backward_layer` need to be a `keras.layers.Layer` "
f"instance. Received: {backward_layer}"
)
if merge_mode not in ["sum", "mul", "ave", "concat", None]:
raise ValueError(
f"Invalid merge mode. Received: {merge_mode}. "
"Merge mode should be one of "
'{"sum", "mul", "ave", "concat", None}'
)
super().__init__(**kwargs)
# Recreate the forward layer from the original layer config, so that it
# will not carry over any state from the layer.
config = serialization_lib.serialize_keras_object(layer)
config["config"]["name"] = "forward_" + utils.removeprefix(
layer.name, "forward_"
)
self.forward_layer = serialization_lib.deserialize_keras_object(config)
if backward_layer is None:
config = serialization_lib.serialize_keras_object(layer)
config["config"]["go_backwards"] = True
config["config"]["name"] = "backward_" + utils.removeprefix(
layer.name, "backward_"
)
self.backward_layer = serialization_lib.deserialize_keras_object(
config
)
else:
self.backward_layer = backward_layer
self._verify_layer_config()
def force_zero_output_for_mask(layer):
# Force the zero_output_for_mask to be True if returning sequences.
if getattr(layer, "zero_output_for_mask", None) is not None:
layer.zero_output_for_mask = layer.return_sequences
force_zero_output_for_mask(self.forward_layer)
force_zero_output_for_mask(self.backward_layer)
self.merge_mode = merge_mode
if weights:
nw = len(weights)
self.forward_layer.initial_weights = weights[: nw // 2]
self.backward_layer.initial_weights = weights[nw // 2 :]
self.stateful = layer.stateful
self.return_sequences = layer.return_sequences
self.return_state = layer.return_state
self.supports_masking = True
self.input_spec = layer.input_spec
def _verify_layer_config(self):
"""Ensure the forward and backward layers have valid common property."""
if self.forward_layer.go_backwards == self.backward_layer.go_backwards:
raise ValueError(
"Forward layer and backward layer should have different "
"`go_backwards` value. Received: "
"forward_layer.go_backwards "
f"{self.forward_layer.go_backwards}, "
"backward_layer.go_backwards="
f"{self.backward_layer.go_backwards}"
)
common_attributes = ("stateful", "return_sequences", "return_state")
for a in common_attributes:
forward_value = getattr(self.forward_layer, a)
backward_value = getattr(self.backward_layer, a)
if forward_value != backward_value:
raise ValueError(
"Forward layer and backward layer are expected to have "
f'the same value for attribute "{a}", got '
f'"{forward_value}" for forward layer and '
f'"{backward_value}" for backward layer'
)
def compute_output_shape(self, sequences_shape, initial_state_shape=None):
output_shape = self.forward_layer.compute_output_shape(sequences_shape)
if self.return_state:
output_shape, state_shape = output_shape[0], output_shape[1:]
if self.merge_mode == "concat":
output_shape = list(output_shape)
output_shape[-1] *= 2
output_shape = tuple(output_shape)
elif self.merge_mode is None:
output_shape = [output_shape, output_shape]
if self.return_state:
if self.merge_mode is None:
return tuple(output_shape) + state_shape + state_shape
return tuple([output_shape]) + (state_shape) + (state_shape)
return tuple(output_shape)
def call(
self,
sequences,
initial_state=None,
mask=None,
training=None,
):
kwargs = {}
if self.forward_layer._call_has_training_arg:
kwargs["training"] = training
if self.forward_layer._call_has_mask_arg:
kwargs["mask"] = mask
if initial_state is not None:
# initial_states are not keras tensors, eg eager tensor from np
# array. They are only passed in from kwarg initial_state, and
# should be passed to forward/backward layer via kwarg
# initial_state as well.
forward_inputs, backward_inputs = sequences, sequences
half = len(initial_state) // 2
forward_state = initial_state[:half]
backward_state = initial_state[half:]
else:
forward_inputs, backward_inputs = sequences, sequences
forward_state, backward_state = None, None
y = self.forward_layer(
forward_inputs, initial_state=forward_state, **kwargs
)
y_rev = self.backward_layer(
backward_inputs, initial_state=backward_state, **kwargs
)
if self.return_state:
states = tuple(y[1:] + y_rev[1:])
y = y[0]
y_rev = y_rev[0]
y = ops.cast(y, self.compute_dtype)
y_rev = ops.cast(y_rev, self.compute_dtype)
if self.return_sequences:
y_rev = ops.flip(y_rev, axis=1)
if self.merge_mode == "concat":
output = ops.concatenate([y, y_rev], axis=-1)
elif self.merge_mode == "sum":
output = y + y_rev
elif self.merge_mode == "ave":
output = (y + y_rev) / 2
elif self.merge_mode == "mul":
output = y * y_rev
elif self.merge_mode is None:
output = (y, y_rev)
else:
raise ValueError(
"Unrecognized value for `merge_mode`. "
f"Received: {self.merge_mode}"
'Expected one of {"concat", "sum", "ave", "mul"}.'
)
if self.return_state:
if self.merge_mode is None:
return output + states
return (output,) + states
return output
def reset_states(self):
# Compatibility alias.
self.reset_state()
def reset_state(self):
if not self.stateful:
raise AttributeError("Layer must be stateful.")
self.forward_layer.reset_state()
self.backward_layer.reset_state()
@property
def states(self):
if self.forward_layer.states and self.backward_layer.states:
return tuple(self.forward_layer.states + self.backward_layer.states)
return None
def build(self, sequences_shape, initial_state_shape=None):
if not self.forward_layer.built:
self.forward_layer.build(sequences_shape)
if not self.backward_layer.built:
self.backward_layer.build(sequences_shape)
self.built = True
def compute_mask(self, _, mask):
if isinstance(mask, list):
mask = mask[0]
if self.return_sequences:
if not self.merge_mode:
output_mask = (mask, mask)
else:
output_mask = mask
else:
output_mask = (None, None) if not self.merge_mode else None
if self.return_state and self.states is not None:
state_mask = (None for _ in self.states)
if isinstance(output_mask, list):
return output_mask + state_mask * 2
return (output_mask,) + state_mask * 2
return output_mask
def get_config(self):
config = {"merge_mode": self.merge_mode}
config["layer"] = serialization_lib.serialize_keras_object(
self.forward_layer
)
config["backward_layer"] = serialization_lib.serialize_keras_object(
self.backward_layer
)
base_config = super().get_config()
return {**base_config, **config}
@classmethod
def from_config(cls, config, custom_objects=None):
# Instead of updating the input, create a copy and use that.
config = copy.deepcopy(config)
config["layer"] = serialization_lib.deserialize_keras_object(
config["layer"], custom_objects=custom_objects
)
# Handle (optional) backward layer instantiation.
backward_layer_config = config.pop("backward_layer", None)
if backward_layer_config is not None:
backward_layer = serialization_lib.deserialize_keras_object(
backward_layer_config, custom_objects=custom_objects
)
config["backward_layer"] = backward_layer
# Instantiate the wrapper, adjust it and return it.
layer = cls(**config)
return layer