-
Notifications
You must be signed in to change notification settings - Fork 17.3k
/
Copy pathmlx_pipeline.py
256 lines (219 loc) Β· 8.62 KB
/
mlx_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import annotations
import logging
from typing import Any, Callable, Iterator, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from pydantic import ConfigDict
DEFAULT_MODEL_ID = "mlx-community/quantized-gemma-2b"
logger = logging.getLogger(__name__)
class MLXPipeline(LLM):
"""MLX Pipeline API.
To use, you should have the ``mlx-lm`` python package installed.
Example using from_model_id:
.. code-block:: python
from langchain_community.llms import MLXPipeline
pipe = MLXPipeline.from_model_id(
model_id="mlx-community/quantized-gemma-2b",
pipeline_kwargs={"max_tokens": 10, "temp": 0.7},
)
Example passing model and tokenizer in directly:
.. code-block:: python
from langchain_community.llms import MLXPipeline
from mlx_lm import load
model_id="mlx-community/quantized-gemma-2b"
model, tokenizer = load(model_id)
pipe = MLXPipeline(model=model, tokenizer=tokenizer)
"""
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model: Any = None #: :meta private:
"""Model."""
tokenizer: Any = None #: :meta private:
"""Tokenizer."""
tokenizer_config: Optional[dict] = None
"""
Configuration parameters specifically for the tokenizer.
Defaults to an empty dictionary.
"""
adapter_file: Optional[str] = None
"""
Path to the adapter file. If provided, applies LoRA layers to the model.
Defaults to None.
"""
lazy: bool = False
"""
If False eval the model parameters to make sure they are
loaded in memory before returning, otherwise they will be loaded
when needed. Default: ``False``
"""
pipeline_kwargs: Optional[dict] = None
"""
Keyword arguments passed to the pipeline. Defaults include:
- temp (float): Temperature for generation, default is 0.0.
- max_tokens (int): Maximum tokens to generate, default is 100.
- verbose (bool): Whether to output verbose logging, default is False.
- formatter (Optional[Callable]): A callable to format the output.
Default is None.
- repetition_penalty (Optional[float]): The penalty factor for
repeated sequences, default is None.
- repetition_context_size (Optional[int]): Size of the context
for applying repetition penalty, default is None.
- top_p (float): The cumulative probability threshold for
top-p filtering, default is 1.0.
"""
model_config = ConfigDict(
extra="forbid",
)
@classmethod
def from_model_id(
cls,
model_id: str,
tokenizer_config: Optional[dict] = None,
adapter_file: Optional[str] = None,
lazy: bool = False,
pipeline_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> MLXPipeline:
"""Construct the pipeline object from model_id and task."""
try:
from mlx_lm import load
except ImportError:
raise ImportError(
"Could not import mlx_lm python package. "
"Please install it with `pip install mlx_lm`."
)
tokenizer_config = tokenizer_config or {}
if adapter_file:
model, tokenizer = load(
model_id, tokenizer_config, adapter_path=adapter_file, lazy=lazy
)
else:
model, tokenizer = load(model_id, tokenizer_config, lazy=lazy)
_pipeline_kwargs = pipeline_kwargs or {}
return cls(
model_id=model_id,
model=model,
tokenizer=tokenizer,
tokenizer_config=tokenizer_config,
adapter_file=adapter_file,
lazy=lazy,
pipeline_kwargs=_pipeline_kwargs,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"tokenizer_config": self.tokenizer_config,
"adapter_file": self.adapter_file,
"lazy": self.lazy,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "mlx_pipeline"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
try:
from mlx_lm import generate
from mlx_lm.sample_utils import make_logits_processors, make_sampler
except ImportError:
raise ImportError(
"Could not import mlx_lm python package. "
"Please install it with `pip install mlx_lm`."
)
pipeline_kwargs = kwargs.get("pipeline_kwargs", self.pipeline_kwargs)
temp: float = pipeline_kwargs.get("temp", 0.0)
max_tokens: int = pipeline_kwargs.get("max_tokens", 100)
verbose: bool = pipeline_kwargs.get("verbose", False)
formatter: Optional[Callable] = pipeline_kwargs.get("formatter", None)
repetition_penalty: Optional[float] = pipeline_kwargs.get(
"repetition_penalty", None
)
repetition_context_size: Optional[int] = pipeline_kwargs.get(
"repetition_context_size", None
)
top_p: float = pipeline_kwargs.get("top_p", 1.0)
min_p: float = pipeline_kwargs.get("min_p", 0.0)
min_tokens_to_keep: int = pipeline_kwargs.get("min_tokens_to_keep", 1)
sampler = make_sampler(temp, top_p, min_p, min_tokens_to_keep)
logits_processors = make_logits_processors(
None, repetition_penalty, repetition_context_size
)
return generate(
model=self.model,
tokenizer=self.tokenizer,
prompt=prompt,
max_tokens=max_tokens,
verbose=verbose,
formatter=formatter,
sampler=sampler,
logits_processors=logits_processors,
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
try:
import mlx.core as mx
from mlx_lm.sample_utils import make_logits_processors, make_sampler
from mlx_lm.utils import generate_step
except ImportError:
raise ImportError(
"Could not import mlx_lm python package. "
"Please install it with `pip install mlx_lm`."
)
pipeline_kwargs = kwargs.get("pipeline_kwargs", self.pipeline_kwargs)
temp: float = pipeline_kwargs.get("temp", 0.0)
max_new_tokens: int = pipeline_kwargs.get("max_tokens", 100)
repetition_penalty: Optional[float] = pipeline_kwargs.get(
"repetition_penalty", None
)
repetition_context_size: Optional[int] = pipeline_kwargs.get(
"repetition_context_size", None
)
top_p: float = pipeline_kwargs.get("top_p", 1.0)
min_p: float = pipeline_kwargs.get("min_p", 0.0)
min_tokens_to_keep: int = pipeline_kwargs.get("min_tokens_to_keep", 1)
prompt = self.tokenizer.encode(prompt, return_tensors="np")
prompt_tokens = mx.array(prompt[0])
eos_token_id = self.tokenizer.eos_token_id
detokenizer = self.tokenizer.detokenizer
detokenizer.reset()
sampler = make_sampler(temp or 0.0, top_p, min_p, min_tokens_to_keep)
logits_processors = make_logits_processors(
None, repetition_penalty, repetition_context_size
)
for (token, prob), n in zip(
generate_step(
prompt=prompt_tokens,
model=self.model,
sampler=sampler,
logits_processors=logits_processors,
),
range(max_new_tokens),
):
# identify text to yield
text: Optional[str] = None
detokenizer.add_token(token)
detokenizer.finalize()
text = detokenizer.last_segment
# yield text, if any
if text:
chunk = GenerationChunk(text=text)
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
# break if stop sequence found
if token == eos_token_id or (stop is not None and text in stop):
break