#!/usr/bin/env python from __future__ import print_function from itertools import count import torch import torch.nn.functional as F POLY_DEGREE = 4 W_target = torch.randn(POLY_DEGREE, 1) * 5 b_target = torch.randn(1) * 5 def make_features(x): """Builds features i.e. a matrix with columns [x, x^2, x^3, x^4].""" x = x.unsqueeze(1) return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1) def f(x): """Approximated function.""" return x.mm(W_target) + b_target.item() def poly_desc(W, b): """Creates a string description of a polynomial.""" result = 'y = ' for i, w in enumerate(W): result += '{:+.2f} x^{} '.format(w, i + 1) result += '{:+.2f}'.format(b[0]) return result def get_batch(batch_size=32): """Builds a batch i.e. (x, f(x)) pair.""" random = torch.randn(batch_size) x = make_features(random) y = f(x) return x, y # Define model fc = torch.nn.Linear(W_target.size(0), 1) for batch_idx in count(1): # Get data batch_x, batch_y = get_batch() # Reset gradients fc.zero_grad() # Forward pass output = F.smooth_l1_loss(fc(batch_x), batch_y) loss = output.item() # Backward pass output.backward() # Apply gradients for param in fc.parameters(): param.data.add_(-0.1 * param.grad) # Stop criterion if loss < 1e-3: break print('Loss: {:.6f} after {} batches'.format(loss, batch_idx)) print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias)) print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))