-
Notifications
You must be signed in to change notification settings - Fork 6.2k
/
Copy pathevaluation_parallel_to_training.py
246 lines (222 loc) · 11 KB
/
evaluation_parallel_to_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""Example showing how one can set up evaluation running in parallel to training.
Such a setup saves a considerable amount of time during RL Algorithm training, b/c
the next training step does NOT have to wait for the previous evaluation procedure to
finish, but can already start running (in parallel).
See RLlib's documentation for more details on the effect of the different supported
evaluation configuration options:
https://docs.ray.io/en/latest/rllib/rllib-advanced-api.html#customized-evaluation-during-training # noqa
For an example of how to write a fully customized evaluation function (which normally
is not necessary as the config options are sufficient and offer maximum flexibility),
see this example script here:
https://github.com/ray-project/ray/blob/master/rllib/examples/evaluation/custom_evaluation.py # noqa
How to run this script
----------------------
`python [script file name].py --enable-new-api-stack`
Use the `--evaluation-num-workers` option to scale up the evaluation workers. Note
that the requested evaluation duration (`--evaluation-duration` measured in
`--evaluation-duration-unit`, which is either "timesteps" (default) or "episodes") is
shared between all configured evaluation workers. For example, if the evaluation
duration is 10 and the unit is "episodes" and you configured 5 workers, then each of the
evaluation workers will run exactly 2 episodes.
For debugging, use the following additional command line options
`--no-tune --num-env-runners=0`
which should allow you to set breakpoints anywhere in the RLlib code and
have the execution stop there for inspection and debugging.
For logging to your WandB account, use:
`--wandb-key=[your WandB API key] --wandb-project=[some project name]
--wandb-run-name=[optional: WandB run name (within the defined project)]`
Results to expect
-----------------
You should see the following output (at the end of the experiment) in your console when
running with a fixed number of 100k training timesteps
(`--enable-new-api-stack --evaluation-duration=auto --stop-timesteps=100000
--stop-reward=100000`):
+-----------------------------+------------+-----------------+--------+
| Trial name | status | loc | iter |
|-----------------------------+------------+-----------------+--------+
| PPO_CartPole-v1_1377a_00000 | TERMINATED | 127.0.0.1:73330 | 25 |
+-----------------------------+------------+-----------------+--------+
+------------------+--------+----------+--------------------+
| total time (s) | ts | reward | episode_len_mean |
|------------------+--------+----------+--------------------|
| 71.7485 | 100000 | 476.51 | 476.51 |
+------------------+--------+----------+--------------------+
When running without parallel evaluation (no `--evaluation-parallel-to-training` flag),
the experiment takes considerably longer (~70sec vs ~80sec):
+-----------------------------+------------+-----------------+--------+
| Trial name | status | loc | iter |
|-----------------------------+------------+-----------------+--------+
| PPO_CartPole-v1_f1788_00000 | TERMINATED | 127.0.0.1:75135 | 25 |
+-----------------------------+------------+-----------------+--------+
+------------------+--------+----------+--------------------+
| total time (s) | ts | reward | episode_len_mean |
|------------------+--------+----------+--------------------|
| 81.7371 | 100000 | 494.68 | 494.68 |
+------------------+--------+----------+--------------------+
"""
from typing import Optional
from ray.tune.result import TRAINING_ITERATION
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.callbacks.callbacks import RLlibCallback
from ray.rllib.examples.envs.classes.multi_agent import MultiAgentCartPole
from ray.rllib.utils.metrics import (
ENV_RUNNER_RESULTS,
EPISODE_RETURN_MEAN,
EVALUATION_RESULTS,
NUM_EPISODES,
NUM_ENV_STEPS_SAMPLED,
NUM_ENV_STEPS_SAMPLED_LIFETIME,
)
from ray.rllib.utils.metrics.metrics_logger import MetricsLogger
from ray.rllib.utils.test_utils import (
add_rllib_example_script_args,
run_rllib_example_script_experiment,
)
from ray.rllib.utils.typing import ResultDict
from ray.tune.registry import get_trainable_cls, register_env
parser = add_rllib_example_script_args(default_reward=500.0)
parser.set_defaults(
evaluation_num_env_runners=2,
evaluation_interval=1,
)
class AssertEvalCallback(RLlibCallback):
def on_train_result(
self,
*,
algorithm: Algorithm,
metrics_logger: Optional[MetricsLogger] = None,
result: ResultDict,
**kwargs,
):
# The eval results can be found inside the main `result` dict
# (old API stack: "evaluation").
eval_results = result.get(EVALUATION_RESULTS, {})
# In there, there is a sub-key: ENV_RUNNER_RESULTS.
eval_env_runner_results = eval_results.get(ENV_RUNNER_RESULTS)
# Make sure we always run exactly the given evaluation duration,
# no matter what the other settings are (such as
# `evaluation_num_env_runners` or `evaluation_parallel_to_training`).
if eval_env_runner_results and NUM_EPISODES in eval_env_runner_results:
num_episodes_done = eval_env_runner_results[NUM_EPISODES]
if algorithm.config.enable_env_runner_and_connector_v2:
num_timesteps_reported = eval_env_runner_results[NUM_ENV_STEPS_SAMPLED]
else:
num_timesteps_reported = eval_results["timesteps_this_iter"]
# We run for automatic duration (as long as training takes).
if algorithm.config.evaluation_duration == "auto":
# If duration=auto: Expect at least as many timesteps as workers
# (each worker's `sample()` is at least called once).
# UNLESS: All eval workers were completely busy during the auto-time
# with older (async) requests and did NOT return anything from the async
# fetch.
assert (
num_timesteps_reported == 0
or num_timesteps_reported
>= algorithm.config.evaluation_num_env_runners
)
# We count in episodes.
elif algorithm.config.evaluation_duration_unit == "episodes":
# Compare number of entries in episode_lengths (this is the
# number of episodes actually run) with desired number of
# episodes from the config.
assert (
algorithm.iteration + 1 % algorithm.config.evaluation_interval != 0
or num_episodes_done == algorithm.config.evaluation_duration
), (num_episodes_done, algorithm.config.evaluation_duration)
print(
"Number of run evaluation episodes: " f"{num_episodes_done} (ok)!"
)
# We count in timesteps.
else:
# TODO (sven): This assertion works perfectly fine locally, but breaks
# the CI for no reason. The observed collected timesteps is +500 more
# than desired (~2500 instead of 2011 and ~1250 vs 1011).
# num_timesteps_wanted = algorithm.config.evaluation_duration
# delta = num_timesteps_wanted - num_timesteps_reported
# Expect roughly the same (desired // num-eval-workers).
# assert abs(delta) < 20, (
# delta,
# num_timesteps_wanted,
# num_timesteps_reported,
# )
print(
"Number of run evaluation timesteps: "
f"{num_timesteps_reported} (ok?)!"
)
if __name__ == "__main__":
args = parser.parse_args()
# Register our environment with tune.
if args.num_agents > 0:
register_env(
"env",
lambda _: MultiAgentCartPole(config={"num_agents": args.num_agents}),
)
base_config = (
get_trainable_cls(args.algo)
.get_default_config()
.environment("env" if args.num_agents > 0 else "CartPole-v1")
.env_runners(create_env_on_local_worker=True)
# Use a custom callback that asserts that we are running the
# configured exact number of episodes per evaluation OR - in auto
# mode - run at least as many episodes as we have eval workers.
.callbacks(AssertEvalCallback)
.evaluation(
# Parallel evaluation+training config.
# Switch on evaluation in parallel with training.
evaluation_parallel_to_training=args.evaluation_parallel_to_training,
# Use two evaluation workers. Must be >0, otherwise,
# evaluation will run on a local worker and block (no parallelism).
evaluation_num_env_runners=args.evaluation_num_env_runners,
# Evaluate every other training iteration (together
# with every other call to Algorithm.train()).
evaluation_interval=args.evaluation_interval,
# Run for n episodes/timesteps (properly distribute load amongst
# all eval workers). The longer it takes to evaluate, the more sense
# it makes to use `evaluation_parallel_to_training=True`.
# Use "auto" to run evaluation for roughly as long as the training
# step takes.
evaluation_duration=args.evaluation_duration,
# "episodes" or "timesteps".
evaluation_duration_unit=args.evaluation_duration_unit,
# Switch off exploratory behavior for better (greedy) results.
evaluation_config={
"explore": False,
# TODO (sven): Add support for window=float(inf) and reduce=mean for
# evaluation episode_return_mean reductions (identical to old stack
# behavior, which does NOT use a window (100 by default) to reduce
# eval episode returns.
"metrics_num_episodes_for_smoothing": 5,
},
)
)
# Add a simple multi-agent setup.
if args.num_agents > 0:
base_config.multi_agent(
policies={f"p{i}" for i in range(args.num_agents)},
policy_mapping_fn=lambda aid, *a, **kw: f"p{aid}",
)
# Set some PPO-specific tuning settings to learn better in the env (assumed to be
# CartPole-v1).
if args.algo == "PPO":
base_config.training(
lr=0.0003,
num_epochs=6,
vf_loss_coeff=0.01,
)
stop = {
TRAINING_ITERATION: args.stop_iters,
f"{EVALUATION_RESULTS}/{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": (
args.stop_reward
),
NUM_ENV_STEPS_SAMPLED_LIFETIME: args.stop_timesteps,
}
run_rllib_example_script_experiment(
base_config,
args,
stop=stop,
success_metric={
f"{EVALUATION_RESULTS}/{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": (
args.stop_reward
),
},
)