-
Notifications
You must be signed in to change notification settings - Fork 6.2k
/
Copy pathpendulum_cql.py
94 lines (86 loc) · 3.24 KB
/
pendulum_cql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import warnings
from pathlib import Path
from ray.rllib.algorithms.cql.cql import CQLConfig
from ray.rllib.utils.metrics import (
ENV_RUNNER_RESULTS,
EPISODE_RETURN_MEAN,
EVALUATION_RESULTS,
NUM_ENV_STEPS_SAMPLED_LIFETIME,
)
from ray.rllib.utils.test_utils import (
add_rllib_example_script_args,
run_rllib_example_script_experiment,
)
parser = add_rllib_example_script_args()
parser.set_defaults(enable_new_api_stack=True)
# Use `parser` to add your own custom command line options to this script
# and (if needed) use their values to set up `config` below.
args = parser.parse_args()
assert (
args.env == "Pendulum-v1" or args.env is None
), "This tuned example works only with `Pendulum-v1`."
# Define the base path relative to this file.
base_path = Path(__file__).parents[2]
# Use the larger data set of Pendulum we have. Note, these are
# parquet data, the default in `AlgorithmConfig.offline_data`.
data_path = base_path / "tests/data/pendulum/pendulum-v1_enormous"
# Define the configuration.
config = (
CQLConfig()
.environment("Pendulum-v1")
.offline_data(
input_=[data_path.as_posix()],
# The `kwargs` for the `map_batches` method in which our
# `OfflinePreLearner` is run. 2 data workers should be run
# concurrently.
map_batches_kwargs={"concurrency": 2, "num_cpus": 1},
# The `kwargs` for the `iter_batches` method. Due to the small
# dataset we choose only a single batch to prefetch.
iter_batches_kwargs={"prefetch_batches": 1},
# The number of iterations to be run per learner when in multi-learner
# mode in a single RLlib training iteration. Leave this to `None` to
# run an entire epoch on the dataset during a single RLlib training
# iteration. For single-learner mode 1 is the only option.
dataset_num_iters_per_learner=5,
# TODO (sven): Has this any influence in the connectors?
actions_in_input_normalized=True,
)
.training(
bc_iters=200,
tau=9.5e-3,
min_q_weight=5.0,
train_batch_size_per_learner=1024,
twin_q=True,
actor_lr=1.7e-3 * (args.num_learners or 1) ** 0.5,
critic_lr=2.5e-3 * (args.num_learners or 1) ** 0.5,
alpha_lr=1e-3 * (args.num_learners or 1) ** 0.5,
# Set this to `None` for all `SAC`-like algorithms. These
# algorithms use learning rates for each optimizer.
lr=None,
)
.reporting(
min_time_s_per_iteration=10,
metrics_num_episodes_for_smoothing=5,
)
.evaluation(
evaluation_interval=3,
evaluation_num_env_runners=1,
evaluation_duration=5,
evaluation_config={
"explore": False,
},
)
)
if not args.no_tune:
warnings.warn(
"You are running the example with Ray Tune. Offline RL uses "
"Ray Data, which doesn't does not interact seamlessly with Ray Tune. "
"If you encounter difficulties try to run the example without "
"Ray Tune using `--no-tune`."
)
stop = {
f"{EVALUATION_RESULTS}/{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": -700.0,
NUM_ENV_STEPS_SAMPLED_LIFETIME: 800000,
}
if __name__ == "__main__":
run_rllib_example_script_experiment(config, args, stop=stop)