-
Notifications
You must be signed in to change notification settings - Fork 6.3k
/
Copy pathdm_control_suite_vision.py
55 lines (49 loc) · 1.66 KB
/
dm_control_suite_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
[1] Mastering Diverse Domains through World Models - 2023
D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap
https://arxiv.org/pdf/2301.04104v1.pdf
[2] Mastering Atari with Discrete World Models - 2021
D. Hafner, T. Lillicrap, M. Norouzi, J. Ba
https://arxiv.org/pdf/2010.02193.pdf
"""
# Run with:
# python [this script name].py --env DMC/[task]/[domain] (e.g. DMC/cartpole/swingup)
# To see all available options:
# python [this script name].py --help
from ray.rllib.algorithms.dreamerv3.dreamerv3 import DreamerV3Config
from ray.rllib.utils.test_utils import add_rllib_example_script_args
parser = add_rllib_example_script_args(
default_iters=1000000,
default_reward=800.0,
default_timesteps=1000000,
)
# Use `parser` to add your own custom command line options to this script
# and (if needed) use their values to set up `config` below.
args = parser.parse_args()
config = (
DreamerV3Config()
# Use image observations.
.environment(
env=args.env,
env_config={"from_pixels": True},
)
.env_runners(
num_env_runners=(args.num_env_runners or 0),
# If we use >1 GPU and increase the batch size accordingly, we should also
# increase the number of envs per worker.
num_envs_per_env_runner=4 * (args.num_learners or 1),
remote_worker_envs=True,
)
.reporting(
metrics_num_episodes_for_smoothing=(args.num_learners or 1),
report_images_and_videos=False,
report_dream_data=False,
report_individual_batch_item_stats=False,
)
# See Appendix A.
.training(
model_size="S",
training_ratio=512,
batch_size_B=16 * (args.num_learners or 1),
)
)