""" =============================================================== Customized sampler to implement an outlier rejections estimator =============================================================== This example illustrates the use of a custom sampler to implement an outlier rejections estimator. It can be used easily within a pipeline in which the number of samples can vary during training, which usually is a limitation of the current scikit-learn pipeline. """ # Authors: Guillaume Lemaitre # License: MIT import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs, make_moons from sklearn.ensemble import IsolationForest from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from imblearn import FunctionSampler from imblearn.pipeline import make_pipeline print(__doc__) rng = np.random.RandomState(42) def plot_scatter(X, y, title): """Function to plot some data as a scatter plot.""" plt.figure() plt.scatter(X[y == 1, 0], X[y == 1, 1], label="Class #1") plt.scatter(X[y == 0, 0], X[y == 0, 1], label="Class #0") plt.legend() plt.title(title) ############################################################################## # Toy data generation ############################################################################## ############################################################################## # We are generating some non Gaussian data set contaminated with some unform # noise. moons, _ = make_moons(n_samples=500, noise=0.05) blobs, _ = make_blobs( n_samples=500, centers=[(-0.75, 2.25), (1.0, 2.0)], cluster_std=0.25 ) outliers = rng.uniform(low=-3, high=3, size=(500, 2)) X_train = np.vstack([moons, blobs, outliers]) y_train = np.hstack( [ np.ones(moons.shape[0], dtype=np.int8), np.zeros(blobs.shape[0], dtype=np.int8), rng.randint(0, 2, size=outliers.shape[0], dtype=np.int8), ] ) plot_scatter(X_train, y_train, "Training dataset") ############################################################################## # We will generate some cleaned test data without outliers. moons, _ = make_moons(n_samples=50, noise=0.05) blobs, _ = make_blobs( n_samples=50, centers=[(-0.75, 2.25), (1.0, 2.0)], cluster_std=0.25 ) X_test = np.vstack([moons, blobs]) y_test = np.hstack( [np.ones(moons.shape[0], dtype=np.int8), np.zeros(blobs.shape[0], dtype=np.int8)] ) plot_scatter(X_test, y_test, "Testing dataset") ############################################################################## # How to use the :class:`~imblearn.FunctionSampler` ############################################################################## ############################################################################## # We first define a function which will use # :class:`~sklearn.ensemble.IsolationForest` to eliminate some outliers from # our dataset during training. The function passed to the # :class:`~imblearn.FunctionSampler` will be called when using the method # ``fit_resample``. def outlier_rejection(X, y): """This will be our function used to resample our dataset.""" model = IsolationForest(max_samples=100, contamination=0.4, random_state=rng) model.fit(X) y_pred = model.predict(X) return X[y_pred == 1], y[y_pred == 1] reject_sampler = FunctionSampler(func=outlier_rejection) X_inliers, y_inliers = reject_sampler.fit_resample(X_train, y_train) plot_scatter(X_inliers, y_inliers, "Training data without outliers") ############################################################################## # Integrate it within a pipeline ############################################################################## ############################################################################## # By elimnating outliers before the training, the classifier will be less # affected during the prediction. pipe = make_pipeline( FunctionSampler(func=outlier_rejection), LogisticRegression(random_state=rng), ) y_pred = pipe.fit(X_train, y_train).predict(X_test) print(classification_report(y_test, y_pred)) clf = LogisticRegression(random_state=rng) y_pred = clf.fit(X_train, y_train).predict(X_test) print(classification_report(y_test, y_pred)) plt.show()