<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
  
    <title>1. Supervised learning &mdash; scikit-learn 0.16.1 documentation</title>
  <!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <link rel="stylesheet" href="_static/css/bootstrap.min.css" media="screen" />
  <link rel="stylesheet" href="_static/css/bootstrap-responsive.css"/>

    
    <link rel="stylesheet" href="_static/nature.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <link rel="stylesheet" href="_static/gallery.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '0.16.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/js/copybutton.js"></script>
    <link rel="shortcut icon" href="_static/favicon.ico"/>
    <link rel="author" title="About these documents" href="about.html" />
    <link rel="top" title="scikit-learn 0.16.1 documentation" href="index.html" />
    <link rel="up" title="&lt;no title&gt;" href="user_guide.html" />
    <link rel="next" title="1.1. Generalized Linear Models" href="modules/linear_model.html" />
    <link rel="prev" title="&lt;no title&gt;" href="user_guide.html" />
  
   
       <script type="text/javascript" src="_static/sidebar.js"></script>
   
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <script src="_static/js/bootstrap.min.js" type="text/javascript"></script>
  <link rel="canonical" href="https://scikit-learn.org/stable/supervised_learning.html" />

  <script type="text/javascript">
    $("div.buttonNext, div.buttonPrevious").hover(
       function () {
           $(this).css('background-color', '#FF9C34');
       },
       function () {
           $(this).css('background-color', '#A7D6E2');
       }
    );
    var bodywrapper = $('.bodywrapper');
    var sidebarbutton = $('#sidebarbutton');
    sidebarbutton.css({'height': '900px'});
  </script>

  </head>
  <body>

<div class="header-wrapper">
    <div class="header">
        <p class="logo"><a href="index.html">
            <img src="_static/scikit-learn-logo-small.png" alt="Logo"/>
        </a>
        </p><div class="navbar">
            <ul>
                <li><a href="../stable/index.html">Home</a></li>
                <li><a href="../stable/install.html">Installation</a></li>
                <li class="btn-li"><div class="btn-group">
		      <a href="documentation.html">Documentation</a>
		      <a class="btn dropdown-toggle" data-toggle="dropdown">
			     <span class="caret"></span>
		      </a>
		      <ul class="dropdown-menu">
			<li class="link-title">Scikit-learn 0.16 (Stable)</li>
			<li><a href="tutorial/index.html">Tutorials</a></li>
			<li><a href="user_guide.html">User guide</a></li>
			<li><a href="modules/classes.html">API</a></li>
			<li><a href="faq.html">FAQ</a></li>
			<li class="divider"></li>
		        <li><a href="http://scikit-learn.org/dev/documentation.html">Development</a></li>
			<li><a href="http://scikit-learn.org/0.15/">Scikit-learn 0.15</a></li>
		      </ul>
		    </div>
		</li>
            <li><a href="auto_examples/index.html">Examples</a></li>
            </ul>

            <div class="search_form">
                <div id="cse" style="width: 100%;"></div>
            </div>
        </div> <!-- end navbar --></div>
</div>


<!-- Github "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
  <img class="fork-me"
       style="position: absolute; top: 0; right: 0; border: 0;"
       src="_static/img/forkme.png"
       alt="Fork me on GitHub" />
</a>

<div class="content-wrapper">
    <div class="sphinxsidebar">
    <div class="sphinxsidebarwrapper">
        <div class="rel">
    

  <!-- rellinks[1:] is an ugly hack to avoid link to module
  index -->
        <div class="rellink">
        <a href="user_guide.html"
        accesskey="P">Previous
        <br/>
        <span class="smallrellink">
        <no title>
        </span>
            <span class="hiddenrellink">
            <no title>
            </span>
        </a>
        </div>
            <div class="spacer">
            &nbsp;
            </div>
        <div class="rellink">
        <a href="modules/linear_model.html"
        accesskey="N">Next
        <br/>
        <span class="smallrellink">
        1.1. Generalized...
        </span>
            <span class="hiddenrellink">
            1.1. Generalized Linear Models
            </span>
        </a>
        </div>

    <!-- Ad a link to the 'up' page -->
        <div class="spacer">
        &nbsp;
        </div>
        <div class="rellink">
        <a href="user_guide.html">
        Up
        <br/>
        <span class="smallrellink">
        <no title>
        </span>
        </a>
        </div>
    </div>
    
      <p class="doc-version">This documentation is for scikit-learn <strong>version 0.16.1</strong> &mdash; <a href="http://scikit-learn.org/stable/support.html#documentation-resources">Other versions</a></p>
    <p class="citing">If you use the software, please consider <a href="about.html#citing-scikit-learn">citing scikit-learn</a>.</p>
    <ul>
<li><a class="reference internal" href="#">1. Supervised learning</a></li>
</ul>

    </div>
</div>



      <div class="content">
            
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <style type="text/css">
  div.bodywrapper blockquote {
      margin: 0 ;
  }

  div.toctree-wrapper ul {
      margin-top: 0 ;
      margin-bottom: 0 ;
      padding-left: 10px ;
  }

  li.toctree-l1 {
      padding: 0 0 0.5em 0 ;
      list-style-type: none;
      font-size: 150% ;
      font-weight: bold;
      }

  li.toctree-l1 ul {
      padding-left: 40px ;
  }

  li.toctree-l2 {
      font-size: 70% ;
      list-style-type: square;
      font-weight: normal;
      }

  li.toctree-l3 {
      font-size: 85% ;
      list-style-type: circle;
      font-weight: normal;
      }

</style><div class="section" id="supervised-learning">
<span id="id1"></span><h1>1. Supervised learning<a class="headerlink" href="#supervised-learning" title="Permalink to this headline">ΒΆ</a></h1>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="modules/linear_model.html">1.1. Generalized Linear Models</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#ordinary-least-squares">1.1.1. Ordinary Least Squares</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#ordinary-least-squares-complexity">1.1.1.1. Ordinary Least Squares Complexity</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#ridge-regression">1.1.2. Ridge Regression</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#ridge-complexity">1.1.2.1. Ridge Complexity</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#setting-the-regularization-parameter-generalized-cross-validation">1.1.2.2. Setting the regularization parameter: generalized Cross-Validation</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#lasso">1.1.3. Lasso</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#setting-regularization-parameter">1.1.3.1. Setting regularization parameter</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/linear_model.html#using-cross-validation">1.1.3.1.1. Using cross-validation</a></li>
<li class="toctree-l4"><a class="reference internal" href="modules/linear_model.html#information-criteria-based-model-selection">1.1.3.1.2. Information-criteria based model selection</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#elastic-net">1.1.4. Elastic Net</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#multi-task-lasso">1.1.5. Multi-task Lasso</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#least-angle-regression">1.1.6. Least Angle Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#lars-lasso">1.1.7. LARS Lasso</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#mathematical-formulation">1.1.7.1. Mathematical formulation</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#orthogonal-matching-pursuit-omp">1.1.8. Orthogonal Matching Pursuit (OMP)</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#bayesian-regression">1.1.9. Bayesian Regression</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#bayesian-ridge-regression">1.1.9.1. Bayesian Ridge Regression</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#automatic-relevance-determination-ard">1.1.9.2. Automatic Relevance Determination - ARD</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#logistic-regression">1.1.10. Logistic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#stochastic-gradient-descent-sgd">1.1.11. Stochastic Gradient Descent - SGD</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#perceptron">1.1.12. Perceptron</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#passive-aggressive-algorithms">1.1.13. Passive Aggressive Algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#robustness-regression-outliers-and-modeling-errors">1.1.14. Robustness regression: outliers and modeling errors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#different-scenario-and-useful-concepts">1.1.14.1. Different scenario and useful concepts</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#ransac-random-sample-consensus">1.1.14.2. RANSAC: RANdom SAmple Consensus</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/linear_model.html#details-of-the-algorithm">1.1.14.2.1. Details of the algorithm</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="modules/linear_model.html#theil-sen-estimator-generalized-median-based-estimator">1.1.14.3. Theil-Sen estimator: generalized-median-based estimator</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/linear_model.html#theoretical-considerations">1.1.14.3.1. Theoretical considerations</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions">1.1.15. Polynomial regression: extending linear models with basis functions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/lda_qda.html">1.2. Linear and quadratic discriminant analysis</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/lda_qda.html#dimensionality-reduction-using-lda">1.2.1. Dimensionality reduction using LDA</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/lda_qda.html#mathematical-idea">1.2.2. Mathematical Idea</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/lda_qda.html#shrinkage">1.2.3. Shrinkage</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/lda_qda.html#estimation-algorithms">1.2.4. Estimation algorithms</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules/svm.html">1.4. Support Vector Machines</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#classification">1.4.1. Classification</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#multi-class-classification">1.4.1.1. Multi-class classification</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#scores-and-probabilities">1.4.1.2. Scores and probabilities</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#unbalanced-problems">1.4.1.3. Unbalanced problems</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#regression">1.4.2. Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#density-estimation-novelty-detection">1.4.3. Density estimation, novelty detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#complexity">1.4.4. Complexity</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#tips-on-practical-use">1.4.5. Tips on Practical Use</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#kernel-functions">1.4.6. Kernel functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#custom-kernels">1.4.6.1. Custom Kernels</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/svm.html#using-python-functions-as-kernels">1.4.6.1.1. Using Python functions as kernels</a></li>
<li class="toctree-l4"><a class="reference internal" href="modules/svm.html#using-the-gram-matrix">1.4.6.1.2. Using the Gram matrix</a></li>
<li class="toctree-l4"><a class="reference internal" href="modules/svm.html#parameters-of-the-rbf-kernel">1.4.6.1.3. Parameters of the RBF Kernel</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#mathematical-formulation">1.4.7. Mathematical formulation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#svc">1.4.7.1. SVC</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#nusvc">1.4.7.2. NuSVC</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/svm.html#svr">1.4.7.3. SVR</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/svm.html#implementation-details">1.4.8. Implementation details</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/sgd.html">1.5. Stochastic Gradient Descent</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#classification">1.5.1. Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#regression">1.5.2. Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#stochastic-gradient-descent-for-sparse-data">1.5.3. Stochastic Gradient Descent for sparse data</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#complexity">1.5.4. Complexity</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#tips-on-practical-use">1.5.5. Tips on Practical Use</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#mathematical-formulation">1.5.6. Mathematical formulation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/sgd.html#id1">1.5.6.1. SGD</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/sgd.html#implementation-details">1.5.7. Implementation details</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/neighbors.html">1.6. Nearest Neighbors</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#unsupervised-nearest-neighbors">1.6.1. Unsupervised Nearest Neighbors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#finding-the-nearest-neighbors">1.6.1.1. Finding the Nearest Neighbors</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#kdtree-and-balltree-classes">1.6.1.2. KDTree and BallTree Classes</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#nearest-neighbors-classification">1.6.2. Nearest Neighbors Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#nearest-neighbors-regression">1.6.3. Nearest Neighbors Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#nearest-neighbor-algorithms">1.6.4. Nearest Neighbor Algorithms</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#brute-force">1.6.4.1. Brute Force</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#k-d-tree">1.6.4.2. K-D Tree</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#ball-tree">1.6.4.3. Ball Tree</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#choice-of-nearest-neighbors-algorithm">1.6.4.4. Choice of Nearest Neighbors Algorithm</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#effect-of-leaf-size">1.6.4.5. Effect of <tt class="docutils literal"><span class="pre">leaf_size</span></tt></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#nearest-centroid-classifier">1.6.5. Nearest Centroid Classifier</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#nearest-shrunken-centroid">1.6.5.1. Nearest Shrunken Centroid</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/neighbors.html#approximate-nearest-neighbors">1.6.6. Approximate Nearest Neighbors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#locality-sensitive-hashing-forest">1.6.6.1. Locality Sensitive Hashing Forest</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/neighbors.html#mathematical-description-of-locality-sensitive-hashing">1.6.6.2. Mathematical description of Locality Sensitive Hashing</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/gaussian_process.html">1.7. Gaussian Processes</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/gaussian_process.html#examples">1.7.1. Examples</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/gaussian_process.html#an-introductory-regression-example">1.7.1.1. An introductory regression example</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/gaussian_process.html#fitting-noisy-data">1.7.1.2. Fitting Noisy Data</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/gaussian_process.html#mathematical-formulation">1.7.2. Mathematical formulation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/gaussian_process.html#the-initial-assumption">1.7.2.1. The initial assumption</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/gaussian_process.html#the-best-linear-unbiased-prediction-blup">1.7.2.2. The best linear unbiased prediction (BLUP)</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/gaussian_process.html#the-empirical-best-linear-unbiased-predictor-eblup">1.7.2.3. The empirical best linear unbiased predictor (EBLUP)</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/gaussian_process.html#correlation-models">1.7.3. Correlation Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/gaussian_process.html#regression-models">1.7.4. Regression Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/gaussian_process.html#implementation-details">1.7.5. Implementation details</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules/naive_bayes.html">1.9. Naive Bayes</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/naive_bayes.html#gaussian-naive-bayes">1.9.1. Gaussian Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/naive_bayes.html#multinomial-naive-bayes">1.9.2. Multinomial Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/naive_bayes.html#bernoulli-naive-bayes">1.9.3. Bernoulli Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/naive_bayes.html#out-of-core-naive-bayes-model-fitting">1.9.4. Out-of-core naive Bayes model fitting</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/tree.html">1.10. Decision Trees</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#classification">1.10.1. Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#regression">1.10.2. Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#multi-output-problems">1.10.3. Multi-output problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#complexity">1.10.4. Complexity</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#tips-on-practical-use">1.10.5. Tips on practical use</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart">1.10.6. Tree algorithms: ID3, C4.5, C5.0 and CART</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/tree.html#mathematical-formulation">1.10.7. Mathematical formulation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/tree.html#classification-criteria">1.10.7.1. Classification criteria</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/tree.html#regression-criteria">1.10.7.2. Regression criteria</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/ensemble.html">1.11. Ensemble methods</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/ensemble.html#bagging-meta-estimator">1.11.1. Bagging meta-estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/ensemble.html#forests-of-randomized-trees">1.11.2. Forests of randomized trees</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#random-forests">1.11.2.1. Random Forests</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#extremely-randomized-trees">1.11.2.2. Extremely Randomized Trees</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#parameters">1.11.2.3. Parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#parallelization">1.11.2.4. Parallelization</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#feature-importance-evaluation">1.11.2.5. Feature importance evaluation</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#totally-random-trees-embedding">1.11.2.6. Totally Random Trees Embedding</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/ensemble.html#adaboost">1.11.3. AdaBoost</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#usage">1.11.3.1. Usage</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/ensemble.html#gradient-tree-boosting">1.11.4. Gradient Tree Boosting</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#classification">1.11.4.1. Classification</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#regression">1.11.4.2. Regression</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#fitting-additional-weak-learners">1.11.4.3. Fitting additional weak-learners</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#controlling-the-tree-size">1.11.4.4. Controlling the tree size</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#mathematical-formulation">1.11.4.5. Mathematical formulation</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/ensemble.html#loss-functions">1.11.4.5.1. Loss Functions</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#regularization">1.11.4.6. Regularization</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/ensemble.html#shrinkage">1.11.4.6.1. Shrinkage</a></li>
<li class="toctree-l4"><a class="reference internal" href="modules/ensemble.html#subsampling">1.11.4.6.2. Subsampling</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="modules/ensemble.html#interpretation">1.11.4.7. Interpretation</a><ul>
<li class="toctree-l4"><a class="reference internal" href="modules/ensemble.html#feature-importance">1.11.4.7.1. Feature importance</a></li>
<li class="toctree-l4"><a class="reference internal" href="modules/ensemble.html#partial-dependence">1.11.4.7.2. Partial dependence</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/multiclass.html">1.12. Multiclass and multilabel algorithms</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/multiclass.html#multilabel-classification-format">1.12.1. Multilabel classification format</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/multiclass.html#one-vs-the-rest">1.12.2. One-Vs-The-Rest</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/multiclass.html#multiclass-learning">1.12.2.1. Multiclass learning</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/multiclass.html#multilabel-learning">1.12.2.2. Multilabel learning</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/multiclass.html#one-vs-one">1.12.3. One-Vs-One</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/multiclass.html#id1">1.12.3.1. Multiclass learning</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/multiclass.html#error-correcting-output-codes">1.12.4. Error-Correcting Output-Codes</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/multiclass.html#id4">1.12.4.1. Multiclass learning</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/feature_selection.html">1.13. Feature selection</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#removing-features-with-low-variance">1.13.1. Removing features with low variance</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#univariate-feature-selection">1.13.2. Univariate feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#recursive-feature-elimination">1.13.3. Recursive feature elimination</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#l1-based-feature-selection">1.13.4. L1-based feature selection</a><ul>
<li class="toctree-l3"><a class="reference internal" href="modules/feature_selection.html#selecting-non-zero-coefficients">1.13.4.1. Selecting non-zero coefficients</a></li>
<li class="toctree-l3"><a class="reference internal" href="modules/feature_selection.html#randomized-sparse-models">1.13.4.2. Randomized sparse models</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#tree-based-feature-selection">1.13.5. Tree-based feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_selection.html#feature-selection-as-part-of-a-pipeline">1.13.6. Feature selection as part of a pipeline</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/label_propagation.html">1.14. Semi-Supervised</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/label_propagation.html#label-propagation">1.14.1. Label Propagation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules/calibration.html">1.16. Probability calibration</a></li>
</ul>
</div>
</div>


          </div>
        </div>
      </div>
        <div class="clearer"></div>
      </div>
    </div>

    <div class="footer">
        &copy; 2010 - 2014, scikit-learn developers (BSD License).
      <a href="_sources/supervised_learning.txt" rel="nofollow">Show this page source</a>
    </div>
     <div class="rel">
    
    <div class="buttonPrevious">
      <a href="user_guide.html">Previous
      </a>
    </div>
    <div class="buttonNext">
      <a href="modules/linear_model.html">Next
      </a>
    </div>
    
     </div>

    
    <script type="text/javascript">
      var _gaq = _gaq || [];
      _gaq.push(['_setAccount', 'UA-22606712-2']);
      _gaq.push(['_trackPageview']);

      (function() {
        var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
        ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
        var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
      })();
    </script>
    

    <script src="http://www.google.com/jsapi" type="text/javascript"></script>
    <script type="text/javascript"> google.load('search', '1',
        {language : 'en'}); google.setOnLoadCallback(function() {
            var customSearchControl = new
            google.search.CustomSearchControl('016639176250731907682:tjtqbvtvij0');
            customSearchControl.setResultSetSize(google.search.Search.FILTERED_CSE_RESULTSET);
            var options = new google.search.DrawOptions();
            options.setAutoComplete(true);
            customSearchControl.draw('cse', options); }, true);
    </script>
    <script src="https://scikit-learn.org/versionwarning.js"></script>
  </body>
</html>