:html_theme.sidebar_secondary.remove: .. _linear_model_ref: sklearn.linear_model ==================== .. automodule:: sklearn.linear_model **User guide.** See the :ref:`linear_model` section for further details. The following subsections are only rough guidelines: the same estimator can fall into multiple categories, depending on its parameters. .. _linear_model_ref-linear-classifiers: Linear classifiers ------------------ .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst LogisticRegression LogisticRegressionCV PassiveAggressiveClassifier Perceptron RidgeClassifier RidgeClassifierCV SGDClassifier SGDOneClassSVM .. _linear_model_ref-classical-linear-regressors: Classical linear regressors --------------------------- .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst LinearRegression Ridge RidgeCV SGDRegressor .. _linear_model_ref-regressors-with-variable-selection: Regressors with variable selection ---------------------------------- The following estimators have built-in variable selection fitting procedures, but any estimator using a L1 or elastic-net penalty also performs variable selection: typically :class:`~linear_model.SGDRegressor` or :class:`~sklearn.linear_model.SGDClassifier` with an appropriate penalty. .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst ElasticNet ElasticNetCV Lars LarsCV Lasso LassoCV LassoLars LassoLarsCV LassoLarsIC OrthogonalMatchingPursuit OrthogonalMatchingPursuitCV .. _linear_model_ref-bayesian-regressors: Bayesian regressors ------------------- .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst ARDRegression BayesianRidge .. _linear_model_ref-multi-task-linear-regressors-with-variable-selection: Multi-task linear regressors with variable selection ---------------------------------------------------- These estimators fit multiple regression problems (or tasks) jointly, while inducing sparse coefficients. While the inferred coefficients may differ between the tasks, they are constrained to agree on the features that are selected (non-zero coefficients). .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst MultiTaskElasticNet MultiTaskElasticNetCV MultiTaskLasso MultiTaskLassoCV .. _linear_model_ref-outlier-robust-regressors: Outlier-robust regressors ------------------------- Any estimator using the Huber loss would also be robust to outliers, e.g., :class:`~linear_model.SGDRegressor` with ``loss='huber'``. .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst HuberRegressor QuantileRegressor RANSACRegressor TheilSenRegressor .. _linear_model_ref-generalized-linear-models-(glm)-for-regression: Generalized linear models (GLM) for regression ---------------------------------------------- These models allow for response variables to have error distributions other than a normal distribution. .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst GammaRegressor PoissonRegressor TweedieRegressor .. _linear_model_ref-miscellaneous: Miscellaneous ------------- .. autosummary:: :nosignatures: :toctree: ../modules/generated/ :template: base.rst PassiveAggressiveRegressor enet_path lars_path lars_path_gram lasso_path orthogonal_mp orthogonal_mp_gram ridge_regression