-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
/
Copy path_spectral.py
805 lines (662 loc) · 30.2 KB
/
_spectral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
"""Algorithms for spectral clustering"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
import numpy as np
from scipy.linalg import LinAlgError, qr, svd
from scipy.sparse import csc_matrix
from ..base import BaseEstimator, ClusterMixin, _fit_context
from ..manifold._spectral_embedding import _spectral_embedding
from ..metrics.pairwise import KERNEL_PARAMS, pairwise_kernels
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..utils import as_float_array, check_random_state
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.validation import validate_data
from ._kmeans import k_means
def cluster_qr(vectors):
"""Find the discrete partition closest to the eigenvector embedding.
This implementation was proposed in [1]_.
.. versionadded:: 1.1
Parameters
----------
vectors : array-like, shape: (n_samples, n_clusters)
The embedding space of the samples.
Returns
-------
labels : array of integers, shape: n_samples
The cluster labels of vectors.
References
----------
.. [1] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
Anil Damle, Victor Minden, Lexing Ying
<10.1093/imaiai/iay008>`
"""
k = vectors.shape[1]
_, _, piv = qr(vectors.T, pivoting=True)
ut, _, v = svd(vectors[piv[:k], :].T)
vectors = abs(np.dot(vectors, np.dot(ut, v.conj())))
return vectors.argmax(axis=1)
def discretize(
vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None
):
"""Search for a partition matrix which is closest to the eigenvector embedding.
This implementation was proposed in [1]_.
Parameters
----------
vectors : array-like of shape (n_samples, n_clusters)
The embedding space of the samples.
copy : bool, default=True
Whether to copy vectors, or perform in-place normalization.
max_svd_restarts : int, default=30
Maximum number of attempts to restart SVD if convergence fails
n_iter_max : int, default=30
Maximum number of iterations to attempt in rotation and partition
matrix search if machine precision convergence is not reached
random_state : int, RandomState instance, default=None
Determines random number generation for rotation matrix initialization.
Use an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
Returns
-------
labels : array of integers, shape: n_samples
The labels of the clusters.
References
----------
.. [1] `Multiclass spectral clustering, 2003
Stella X. Yu, Jianbo Shi
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
Notes
-----
The eigenvector embedding is used to iteratively search for the
closest discrete partition. First, the eigenvector embedding is
normalized to the space of partition matrices. An optimal discrete
partition matrix closest to this normalized embedding multiplied by
an initial rotation is calculated. Fixing this discrete partition
matrix, an optimal rotation matrix is calculated. These two
calculations are performed until convergence. The discrete partition
matrix is returned as the clustering solution. Used in spectral
clustering, this method tends to be faster and more robust to random
initialization than k-means.
"""
random_state = check_random_state(random_state)
vectors = as_float_array(vectors, copy=copy)
eps = np.finfo(float).eps
n_samples, n_components = vectors.shape
# Normalize the eigenvectors to an equal length of a vector of ones.
# Reorient the eigenvectors to point in the negative direction with respect
# to the first element. This may have to do with constraining the
# eigenvectors to lie in a specific quadrant to make the discretization
# search easier.
norm_ones = np.sqrt(n_samples)
for i in range(vectors.shape[1]):
vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) * norm_ones
if vectors[0, i] != 0:
vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i])
# Normalize the rows of the eigenvectors. Samples should lie on the unit
# hypersphere centered at the origin. This transforms the samples in the
# embedding space to the space of partition matrices.
vectors = vectors / np.sqrt((vectors**2).sum(axis=1))[:, np.newaxis]
svd_restarts = 0
has_converged = False
# If there is an exception we try to randomize and rerun SVD again
# do this max_svd_restarts times.
while (svd_restarts < max_svd_restarts) and not has_converged:
# Initialize first column of rotation matrix with a row of the
# eigenvectors
rotation = np.zeros((n_components, n_components))
rotation[:, 0] = vectors[random_state.randint(n_samples), :].T
# To initialize the rest of the rotation matrix, find the rows
# of the eigenvectors that are as orthogonal to each other as
# possible
c = np.zeros(n_samples)
for j in range(1, n_components):
# Accumulate c to ensure row is as orthogonal as possible to
# previous picks as well as current one
c += np.abs(np.dot(vectors, rotation[:, j - 1]))
rotation[:, j] = vectors[c.argmin(), :].T
last_objective_value = 0.0
n_iter = 0
while not has_converged:
n_iter += 1
t_discrete = np.dot(vectors, rotation)
labels = t_discrete.argmax(axis=1)
vectors_discrete = csc_matrix(
(np.ones(len(labels)), (np.arange(0, n_samples), labels)),
shape=(n_samples, n_components),
)
t_svd = vectors_discrete.T @ vectors
try:
U, S, Vh = np.linalg.svd(t_svd)
except LinAlgError:
svd_restarts += 1
print("SVD did not converge, randomizing and trying again")
break
ncut_value = 2.0 * (n_samples - S.sum())
if (abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max):
has_converged = True
else:
# otherwise calculate rotation and continue
last_objective_value = ncut_value
rotation = np.dot(Vh.T, U.T)
if not has_converged:
raise LinAlgError("SVD did not converge")
return labels
@validate_params(
{"affinity": ["array-like", "sparse matrix"]},
prefer_skip_nested_validation=False,
)
def spectral_clustering(
affinity,
*,
n_clusters=8,
n_components=None,
eigen_solver=None,
random_state=None,
n_init=10,
eigen_tol="auto",
assign_labels="kmeans",
verbose=False,
):
"""Apply clustering to a projection of the normalized Laplacian.
In practice Spectral Clustering is very useful when the structure of
the individual clusters is highly non-convex or more generally when
a measure of the center and spread of the cluster is not a suitable
description of the complete cluster. For instance, when clusters are
nested circles on the 2D plane.
If affinity is the adjacency matrix of a graph, this method can be
used to find normalized graph cuts [1]_, [2]_.
Read more in the :ref:`User Guide <spectral_clustering>`.
Parameters
----------
affinity : {array-like, sparse matrix} of shape (n_samples, n_samples)
The affinity matrix describing the relationship of the samples to
embed. **Must be symmetric**.
Possible examples:
- adjacency matrix of a graph,
- heat kernel of the pairwise distance matrix of the samples,
- symmetric k-nearest neighbours connectivity matrix of the samples.
n_clusters : int, default=None
Number of clusters to extract.
n_components : int, default=n_clusters
Number of eigenvectors to use for the spectral embedding.
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
The eigenvalue decomposition method. If None then ``'arpack'`` is used.
See [4]_ for more details regarding ``'lobpcg'``.
Eigensolver ``'amg'`` runs ``'lobpcg'`` with optional
Algebraic MultiGrid preconditioning and requires pyamg to be installed.
It can be faster on very large sparse problems [6]_ and [7]_.
random_state : int, RandomState instance, default=None
A pseudo random number generator used for the initialization
of the lobpcg eigenvectors decomposition when `eigen_solver ==
'amg'`, and for the K-Means initialization. Use an int to make
the results deterministic across calls (See
:term:`Glossary <random_state>`).
.. note::
When using `eigen_solver == 'amg'`,
it is necessary to also fix the global numpy seed with
`np.random.seed(int)` to get deterministic results. See
https://github.com/pyamg/pyamg/issues/139 for further
information.
n_init : int, default=10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of n_init
consecutive runs in terms of inertia. Only used if
``assign_labels='kmeans'``.
eigen_tol : float, default="auto"
Stopping criterion for eigendecomposition of the Laplacian matrix.
If `eigen_tol="auto"` then the passed tolerance will depend on the
`eigen_solver`:
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
`eigen_tol=None` which configures the underlying `lobpcg` solver to
automatically resolve the value according to their heuristics. See,
:func:`scipy.sparse.linalg.lobpcg` for details.
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
values of `tol<1e-5` may lead to convergence issues and should be
avoided.
.. versionadded:: 1.2
Added 'auto' option.
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
The strategy to use to assign labels in the embedding
space. There are three ways to assign labels after the Laplacian
embedding. k-means can be applied and is a popular choice. But it can
also be sensitive to initialization. Discretization is another
approach which is less sensitive to random initialization [3]_.
The cluster_qr method [5]_ directly extracts clusters from eigenvectors
in spectral clustering. In contrast to k-means and discretization, cluster_qr
has no tuning parameters and is not an iterative method, yet may outperform
k-means and discretization in terms of both quality and speed. For a detailed
comparison of clustering strategies, refer to the following example:
:ref:`sphx_glr_auto_examples_cluster_plot_coin_segmentation.py`.
.. versionchanged:: 1.1
Added new labeling method 'cluster_qr'.
verbose : bool, default=False
Verbosity mode.
.. versionadded:: 0.24
Returns
-------
labels : array of integers, shape: n_samples
The labels of the clusters.
Notes
-----
The graph should contain only one connected component, elsewhere
the results make little sense.
This algorithm solves the normalized cut for `k=2`: it is a
normalized spectral clustering.
References
----------
.. [1] :doi:`Normalized cuts and image segmentation, 2000
Jianbo Shi, Jitendra Malik
<10.1109/34.868688>`
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
Ulrike von Luxburg
<10.1007/s11222-007-9033-z>`
.. [3] `Multiclass spectral clustering, 2003
Stella X. Yu, Jianbo Shi
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
A. V. Knyazev
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
<10.1137/S1064827500366124>`
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
Anil Damle, Victor Minden, Lexing Ying
<10.1093/imaiai/iay008>`
.. [6] :doi:`Multiscale Spectral Image Segmentation Multiscale preconditioning
for computing eigenvalues of graph Laplacians in image segmentation, 2006
Andrew Knyazev
<10.13140/RG.2.2.35280.02565>`
.. [7] :doi:`Preconditioned spectral clustering for stochastic block partition
streaming graph challenge (Preliminary version at arXiv.)
David Zhuzhunashvili, Andrew Knyazev
<10.1109/HPEC.2017.8091045>`
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> from sklearn.cluster import spectral_clustering
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> affinity = pairwise_kernels(X, metric='rbf')
>>> spectral_clustering(
... affinity=affinity, n_clusters=2, assign_labels="discretize", random_state=0
... )
array([1, 1, 1, 0, 0, 0])
"""
clusterer = SpectralClustering(
n_clusters=n_clusters,
n_components=n_components,
eigen_solver=eigen_solver,
random_state=random_state,
n_init=n_init,
affinity="precomputed",
eigen_tol=eigen_tol,
assign_labels=assign_labels,
verbose=verbose,
).fit(affinity)
return clusterer.labels_
class SpectralClustering(ClusterMixin, BaseEstimator):
"""Apply clustering to a projection of the normalized Laplacian.
In practice Spectral Clustering is very useful when the structure of
the individual clusters is highly non-convex, or more generally when
a measure of the center and spread of the cluster is not a suitable
description of the complete cluster, such as when clusters are
nested circles on the 2D plane.
If the affinity matrix is the adjacency matrix of a graph, this method
can be used to find normalized graph cuts [1]_, [2]_.
When calling ``fit``, an affinity matrix is constructed using either
a kernel function such the Gaussian (aka RBF) kernel with Euclidean
distance ``d(X, X)``::
np.exp(-gamma * d(X,X) ** 2)
or a k-nearest neighbors connectivity matrix.
Alternatively, a user-provided affinity matrix can be specified by
setting ``affinity='precomputed'``.
Read more in the :ref:`User Guide <spectral_clustering>`.
Parameters
----------
n_clusters : int, default=8
The dimension of the projection subspace.
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities. If None, then ``'arpack'`` is
used. See [4]_ for more details regarding `'lobpcg'`.
n_components : int, default=None
Number of eigenvectors to use for the spectral embedding. If None,
defaults to `n_clusters`.
random_state : int, RandomState instance, default=None
A pseudo random number generator used for the initialization
of the lobpcg eigenvectors decomposition when `eigen_solver ==
'amg'`, and for the K-Means initialization. Use an int to make
the results deterministic across calls (See
:term:`Glossary <random_state>`).
.. note::
When using `eigen_solver == 'amg'`,
it is necessary to also fix the global numpy seed with
`np.random.seed(int)` to get deterministic results. See
https://github.com/pyamg/pyamg/issues/139 for further
information.
n_init : int, default=10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of n_init
consecutive runs in terms of inertia. Only used if
``assign_labels='kmeans'``.
gamma : float, default=1.0
Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
Ignored for ``affinity='nearest_neighbors'``, ``affinity='precomputed'``
or ``affinity='precomputed_nearest_neighbors'``.
affinity : str or callable, default='rbf'
How to construct the affinity matrix.
- 'nearest_neighbors': construct the affinity matrix by computing a
graph of nearest neighbors.
- 'rbf': construct the affinity matrix using a radial basis function
(RBF) kernel.
- 'precomputed': interpret ``X`` as a precomputed affinity matrix,
where larger values indicate greater similarity between instances.
- 'precomputed_nearest_neighbors': interpret ``X`` as a sparse graph
of precomputed distances, and construct a binary affinity matrix
from the ``n_neighbors`` nearest neighbors of each instance.
- one of the kernels supported by
:func:`~sklearn.metrics.pairwise.pairwise_kernels`.
Only kernels that produce similarity scores (non-negative values that
increase with similarity) should be used. This property is not checked
by the clustering algorithm.
n_neighbors : int, default=10
Number of neighbors to use when constructing the affinity matrix using
the nearest neighbors method. Ignored for ``affinity='rbf'``.
eigen_tol : float, default="auto"
Stopping criterion for eigen decomposition of the Laplacian matrix.
If `eigen_tol="auto"` then the passed tolerance will depend on the
`eigen_solver`:
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
`eigen_tol=None` which configures the underlying `lobpcg` solver to
automatically resolve the value according to their heuristics. See,
:func:`scipy.sparse.linalg.lobpcg` for details.
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
values of `tol<1e-5` may lead to convergence issues and should be
avoided.
.. versionadded:: 1.2
Added 'auto' option.
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
The strategy for assigning labels in the embedding space. There are two
ways to assign labels after the Laplacian embedding. k-means is a
popular choice, but it can be sensitive to initialization.
Discretization is another approach which is less sensitive to random
initialization [3]_.
The cluster_qr method [5]_ directly extract clusters from eigenvectors
in spectral clustering. In contrast to k-means and discretization, cluster_qr
has no tuning parameters and runs no iterations, yet may outperform
k-means and discretization in terms of both quality and speed.
.. versionchanged:: 1.1
Added new labeling method 'cluster_qr'.
degree : float, default=3
Degree of the polynomial kernel. Ignored by other kernels.
coef0 : float, default=1
Zero coefficient for polynomial and sigmoid kernels.
Ignored by other kernels.
kernel_params : dict of str to any, default=None
Parameters (keyword arguments) and values for kernel passed as
callable object. Ignored by other kernels.
n_jobs : int, default=None
The number of parallel jobs to run when `affinity='nearest_neighbors'`
or `affinity='precomputed_nearest_neighbors'`. The neighbors search
will be done in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : bool, default=False
Verbosity mode.
.. versionadded:: 0.24
Attributes
----------
affinity_matrix_ : array-like of shape (n_samples, n_samples)
Affinity matrix used for clustering. Available only after calling
``fit``.
labels_ : ndarray of shape (n_samples,)
Labels of each point
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
sklearn.cluster.KMeans : K-Means clustering.
sklearn.cluster.DBSCAN : Density-Based Spatial Clustering of
Applications with Noise.
Notes
-----
A distance matrix for which 0 indicates identical elements and high values
indicate very dissimilar elements can be transformed into an affinity /
similarity matrix that is well-suited for the algorithm by
applying the Gaussian (aka RBF, heat) kernel::
np.exp(- dist_matrix ** 2 / (2. * delta ** 2))
where ``delta`` is a free parameter representing the width of the Gaussian
kernel.
An alternative is to take a symmetric version of the k-nearest neighbors
connectivity matrix of the points.
If the pyamg package is installed, it is used: this greatly
speeds up computation.
References
----------
.. [1] :doi:`Normalized cuts and image segmentation, 2000
Jianbo Shi, Jitendra Malik
<10.1109/34.868688>`
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
Ulrike von Luxburg
<10.1007/s11222-007-9033-z>`
.. [3] `Multiclass spectral clustering, 2003
Stella X. Yu, Jianbo Shi
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
A. V. Knyazev
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
<10.1137/S1064827500366124>`
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
Anil Damle, Victor Minden, Lexing Ying
<10.1093/imaiai/iay008>`
Examples
--------
>>> from sklearn.cluster import SpectralClustering
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = SpectralClustering(n_clusters=2,
... assign_labels='discretize',
... random_state=0).fit(X)
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
>>> clustering
SpectralClustering(assign_labels='discretize', n_clusters=2,
random_state=0)
For a comparison of Spectral clustering with other clustering algorithms, see
:ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py`
"""
_parameter_constraints: dict = {
"n_clusters": [Interval(Integral, 1, None, closed="left")],
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
"n_components": [Interval(Integral, 1, None, closed="left"), None],
"random_state": ["random_state"],
"n_init": [Interval(Integral, 1, None, closed="left")],
"gamma": [Interval(Real, 0, None, closed="left")],
"affinity": [
callable,
StrOptions(
set(KERNEL_PARAMS)
| {"nearest_neighbors", "precomputed", "precomputed_nearest_neighbors"}
),
],
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
"eigen_tol": [
Interval(Real, 0.0, None, closed="left"),
StrOptions({"auto"}),
],
"assign_labels": [StrOptions({"kmeans", "discretize", "cluster_qr"})],
"degree": [Interval(Real, 0, None, closed="left")],
"coef0": [Interval(Real, None, None, closed="neither")],
"kernel_params": [dict, None],
"n_jobs": [Integral, None],
"verbose": ["verbose"],
}
def __init__(
self,
n_clusters=8,
*,
eigen_solver=None,
n_components=None,
random_state=None,
n_init=10,
gamma=1.0,
affinity="rbf",
n_neighbors=10,
eigen_tol="auto",
assign_labels="kmeans",
degree=3,
coef0=1,
kernel_params=None,
n_jobs=None,
verbose=False,
):
self.n_clusters = n_clusters
self.eigen_solver = eigen_solver
self.n_components = n_components
self.random_state = random_state
self.n_init = n_init
self.gamma = gamma
self.affinity = affinity
self.n_neighbors = n_neighbors
self.eigen_tol = eigen_tol
self.assign_labels = assign_labels
self.degree = degree
self.coef0 = coef0
self.kernel_params = kernel_params
self.n_jobs = n_jobs
self.verbose = verbose
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Perform spectral clustering from features, or affinity matrix.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples)
Training instances to cluster, similarities / affinities between
instances if ``affinity='precomputed'``, or distances between
instances if ``affinity='precomputed_nearest_neighbors``. If a
sparse matrix is provided in a format other than ``csr_matrix``,
``csc_matrix``, or ``coo_matrix``, it will be converted into a
sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
A fitted instance of the estimator.
"""
X = validate_data(
self,
X,
accept_sparse=["csr", "csc", "coo"],
dtype=np.float64,
ensure_min_samples=2,
)
allow_squared = self.affinity in [
"precomputed",
"precomputed_nearest_neighbors",
]
if X.shape[0] == X.shape[1] and not allow_squared:
warnings.warn(
"The spectral clustering API has changed. ``fit``"
"now constructs an affinity matrix from data. To use"
" a custom affinity matrix, "
"set ``affinity=precomputed``."
)
if self.affinity == "nearest_neighbors":
connectivity = kneighbors_graph(
X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs
)
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
elif self.affinity == "precomputed_nearest_neighbors":
estimator = NearestNeighbors(
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed"
).fit(X)
connectivity = estimator.kneighbors_graph(X=X, mode="connectivity")
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
elif self.affinity == "precomputed":
self.affinity_matrix_ = X
else:
params = self.kernel_params
if params is None:
params = {}
if not callable(self.affinity):
params["gamma"] = self.gamma
params["degree"] = self.degree
params["coef0"] = self.coef0
self.affinity_matrix_ = pairwise_kernels(
X, metric=self.affinity, filter_params=True, **params
)
random_state = check_random_state(self.random_state)
n_components = (
self.n_clusters if self.n_components is None else self.n_components
)
# We now obtain the real valued solution matrix to the
# relaxed Ncut problem, solving the eigenvalue problem
# L_sym x = lambda x and recovering u = D^-1/2 x.
# The first eigenvector is constant only for fully connected graphs
# and should be kept for spectral clustering (drop_first = False)
# See spectral_embedding documentation.
maps = _spectral_embedding(
self.affinity_matrix_,
n_components=n_components,
eigen_solver=self.eigen_solver,
random_state=random_state,
eigen_tol=self.eigen_tol,
drop_first=False,
)
if self.verbose:
print(f"Computing label assignment using {self.assign_labels}")
if self.assign_labels == "kmeans":
_, self.labels_, _ = k_means(
maps,
self.n_clusters,
random_state=random_state,
n_init=self.n_init,
verbose=self.verbose,
)
elif self.assign_labels == "cluster_qr":
self.labels_ = cluster_qr(maps)
else:
self.labels_ = discretize(maps, random_state=random_state)
return self
def fit_predict(self, X, y=None):
"""Perform spectral clustering on `X` and return cluster labels.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples, n_samples)
Training instances to cluster, similarities / affinities between
instances if ``affinity='precomputed'``, or distances between
instances if ``affinity='precomputed_nearest_neighbors``. If a
sparse matrix is provided in a format other than ``csr_matrix``,
``csc_matrix``, or ``coo_matrix``, it will be converted into a
sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
return super().fit_predict(X, y)
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = True
tags.input_tags.pairwise = self.affinity in [
"precomputed",
"precomputed_nearest_neighbors",
]
return tags