Skip to content
/ SUICA Public

[ICML 2025] Code for SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics.

License

Notifications You must be signed in to change notification settings

Szym29/SUICA

Repository files navigation

SUICA

SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics
Qingtian Zhu1*, Yumin Zheng2,3*, Yuling Sang4, Yifan Zhan1, Ziyan Zhu5, Jun Ding2,3,6, Yinqiang Zheng1
1The University of Tokyo, 2McGill University, 3MUHC Research Institute, 4Duke-NUS Medical School,
5Carnegie Mellon University, 6Mila-Quebec AI Institute
ICML 2025


SUICA pipeline

Environment

conda create -n SUICA python=3.9 -y && conda activate SUICA
pip install -r requirements.txt

To Run Your Data

The typical data structure is as follows:

|-- custom_root_path
    |-- configs #configuration file for GAE training and GAE-INR joint training
        |-- ST
            |--embedder_gae.yaml
            |--inr_embd.yaml
    |-- data 
        |--preprocessed_data
            |--your_data.h5ad
    |logs
    |--networks
    |--scripts
    |--systems
    |--datasets.py  
    |--train.py # The main file
    |--utils.py

Training

Train the Graph AutoEncoder (GAE)

python train.py --mode embedder --conf ./configs/ST/embedder_gae.yaml

Train the GAE-INR

python train.py --mode inr --conf ./configs/ST/inr_embd.yaml

Citation

@article{zhu2024suica,
  title={SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics},
  author={Zhu, Qingtian and Zheng, Yumin and Sang, Yuling and Zhan, Yifan and Zhu, Ziyan and Ding, Jun and Zheng, Yinqiang},
  journal={arXiv preprint arXiv:2412.01124},
  year={2024}
}

About

[ICML 2025] Code for SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics.

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •  

Languages