-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathproximal_adagrad.py
150 lines (135 loc) · 6.35 KB
/
proximal_adagrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Proximal Adagrad optimizer."""
from typing import Callable, Union
import tensorflow as tf
from typeguard import typechecked
from tensorflow_addons.optimizers import KerasLegacyOptimizer
from tensorflow_addons.utils.types import FloatTensorLike
@tf.keras.utils.register_keras_serializable(package="Addons")
class ProximalAdagrad(KerasLegacyOptimizer):
"""Optimizer that implements the Proximal Adagrad algorithm.
References:
- [Efficient Learning using Forward-Backward Splitting](
http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf).
"""
@typechecked
def __init__(
self,
learning_rate: Union[FloatTensorLike, Callable] = 0.001,
initial_accumulator_value: float = 0.1,
l1_regularization_strength: float = 0.0,
l2_regularization_strength: float = 0.0,
name: str = "ProximalAdagrad",
**kwargs,
):
"""Construct a new Proximal Adagrad optimizer.
Args:
learning_rate: A Tensor or a floating point value, or a schedule
that is a `tf.keras.optimizers.schedules.LearningRateSchedule`.
The learning rate.
initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.
l1_regularization_strength: A floating point value.
The l1 regularization term, must be greater than or
equal to zero.
l2_regularization_strength: A floating point value.
The l2 regularization term, must be greater than or
equal to zero.
name: Optional name for the operations created when applying
gradients. Defaults to "ProximalAdagrad".
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients
by norm; `clipvalue` is clip gradients by value, `decay` is
included for backward compatibility to allow time inverse
decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
Raises:
ValueError: If the `initial_accumulator_value`, `l1` or `l2`
is invalid.
"""
if initial_accumulator_value < 0.0:
raise ValueError("`initial_accumulator_value` must be non-negative.")
if l1_regularization_strength < 0.0:
raise ValueError("`l1_regularization_strength` must be non-negative.")
if l2_regularization_strength < 0.0:
raise ValueError("`l2_regularization_strength` must be non-negative.")
super().__init__(name, **kwargs)
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
self._set_hyper("l1_regularization_strength", l1_regularization_strength)
self._set_hyper("l2_regularization_strength", l2_regularization_strength)
self._initial_accumulator_value = initial_accumulator_value
def _create_slots(self, var_list):
for var in var_list:
init = tf.keras.initializers.constant(self._initial_accumulator_value)
self.add_slot(var, "accumulator", init)
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
acc = self.get_slot(var, "accumulator")
return tf.raw_ops.ResourceApplyProximalAdagrad(
var=var.handle,
accum=acc.handle,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=coefficients["l2_regularization_strength"],
grad=grad,
use_locking=self._use_locking,
)
def _prepare_local(self, var_device, var_dtype, apply_state):
super()._prepare_local(var_device, var_dtype, apply_state)
apply_state[(var_device, var_dtype)].update(
{
"l1_regularization_strength": tf.identity(
self._get_hyper("l1_regularization_strength", var_dtype)
),
"l2_regularization_strength": tf.identity(
self._get_hyper("l2_regularization_strength", var_dtype)
),
}
)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
acc = self.get_slot(var, "accumulator")
return tf.raw_ops.ResourceSparseApplyProximalAdagrad(
var=var.handle,
accum=acc.handle,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=coefficients["l2_regularization_strength"],
grad=grad,
indices=indices,
use_locking=self._use_locking,
)
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"initial_accumulator_value": self._initial_accumulator_value,
"l1_regularization_strength": self._serialize_hyperparameter(
"l1_regularization_strength"
),
"l2_regularization_strength": self._serialize_hyperparameter(
"l2_regularization_strength"
),
}
)
return config