-
Notifications
You must be signed in to change notification settings - Fork 255
/
Copy pathsoft_round.py
56 lines (43 loc) · 1.7 KB
/
soft_round.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layers for soft rounding."""
import tensorflow as tf
from tensorflow_compression.python.ops import round_ops
__all__ = [
"SoftRound",
"SoftRoundConditionalMean",
]
class SoftRound(tf.keras.layers.Layer):
"""Applies a differentiable approximation of rounding."""
def __init__(self, alpha=5.0, inverse=False, **kwargs):
super().__init__(**kwargs)
self._alpha = alpha
if inverse:
self._transform = round_ops.soft_round_inverse
else:
self._transform = round_ops.soft_round
def call(self, inputs):
return self._transform(inputs, self._alpha)
def compute_output_shape(self, input_shape):
return input_shape
class SoftRoundConditionalMean(tf.keras.layers.Layer):
"""Conditional mean of inputs given noisy soft rounded values."""
def __init__(self, alpha=5.0, **kwargs):
super().__init__(**kwargs)
self._alpha = alpha
def call(self, inputs):
return round_ops.soft_round_conditional_mean(inputs, alpha=self._alpha)
def compute_output_shape(self, input_shape):
return input_shape