{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Tce3stUlHN0L" }, "source": [ "##### Copyright 2020 The TensorFlow IO Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "id": "tuOe1ymfHZPu" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "qFdPvlXBOdUN" }, "source": [ "# Streaming structured data from Elasticsearch using Tensorflow-IO" ] }, { "cell_type": "markdown", "metadata": { "id": "MfBg1C5NB3X0" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " View on TensorFlow.org\n", " \n", " Run in Google Colab\n", " \n", " View source on GitHub\n", " \n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "xHxb-dlhMIzW" }, "source": [ "## Overview\n", "\n", "This tutorial focuses on streaming data from an [Elasticsearch](https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html) cluster into a `tf.data.Dataset` which is then used in conjunction with `tf.keras` for training and inference.\n", "\n", "Elasticseach is primarily a distributed search engine which supports storing structured, unstructured, geospatial, numeric data etc. For the purpose of this tutorial, a dataset with structured records is utilized.\n", "\n", "**NOTE:** A basic understanding of [elasticsearch storage](https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html) will help you in following the tutorial with ease." ] }, { "cell_type": "markdown", "metadata": { "id": "MUXex9ctTuDB" }, "source": [ "## Setup packages\n", "\n", "The `elasticsearch` package is utilized for preparing and storing the data within elasticsearch indices for demonstration purposes only. In real-world production clusters with numerous nodes, the cluster might be receiving the data from connectors like logstash etc.\n", "\n", "Once the data is available in the elasticsearch cluster, only `tensorflow-io` is required to stream the data into the models.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "upgCc3gXybsA" }, "source": [ "### Install the required tensorflow-io and elasticsearch packages" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "48B9eAMMhAgw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow-io in /usr/local/lib/python3.6/dist-packages (0.16.0)\n", "Requirement already satisfied: tensorflow<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-io) (2.3.0)\n", "Requirement already satisfied: keras-preprocessing<1.2,>=1.1.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.1.2)\n", "Requirement already satisfied: numpy<1.19.0,>=1.16.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.18.5)\n", "Requirement already satisfied: scipy==1.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.4.1)\n", "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.10.0)\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.3.0)\n", "Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.10.0)\n", "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.33.2)\n", "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.35.1)\n", "Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.6.3)\n", "Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.15.0)\n", "Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.2.0)\n", "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.1.0)\n", "Requirement already satisfied: tensorboard<3,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.3.0)\n", "Requirement already satisfied: tensorflow-estimator<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.3.0)\n", "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.12.1)\n", "Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.12.4)\n", "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.3.3)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.23.0)\n", "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.7.0)\n", "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.0.1)\n", "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (50.3.2)\n", "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.17.2)\n", "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.3.3)\n", "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.4.2)\n", "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.24.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2020.6.20)\n", "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.0.4)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.10)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.2.8)\n", "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (4.1.1)\n", "Requirement already satisfied: rsa<5,>=3.1.4; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (4.6)\n", "Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.0.0)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.3.0)\n", "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.4.8)\n", "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.4.0)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.1.0)\n", "Requirement already satisfied: elasticsearch in /usr/local/lib/python3.6/dist-packages (7.9.1)\n", "Requirement already satisfied: urllib3>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from elasticsearch) (1.24.3)\n", "Requirement already satisfied: certifi in /usr/local/lib/python3.6/dist-packages (from elasticsearch) (2020.6.20)\n" ] } ], "source": [ "!pip install tensorflow-io\n", "!pip install elasticsearch\n" ] }, { "cell_type": "markdown", "metadata": { "id": "gjrZNJQRJP-U" }, "source": [ "### Import packages" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "m6KXZuTBWgRm" }, "outputs": [], "source": [ "import os\n", "import time\n", "from sklearn.model_selection import train_test_split\n", "from elasticsearch import Elasticsearch\n", "import numpy as np\n", "import pandas as pd\n", "import tensorflow as tf\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.layers.experimental import preprocessing\n", "import tensorflow_io as tfio" ] }, { "cell_type": "markdown", "metadata": { "id": "eCgO11GTJaTj" }, "source": [ "### Validate tf and tfio imports" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "dX74RKfZ_TdF" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensorflow-io version: 0.16.0\n", "tensorflow version: 2.3.0\n" ] } ], "source": [ "print(\"tensorflow-io version: {}\".format(tfio.__version__))\n", "print(\"tensorflow version: {}\".format(tf.__version__))" ] }, { "cell_type": "markdown", "metadata": { "id": "yZmI7l_GykcW" }, "source": [ "## Download and setup the Elasticsearch instance\n", "\n", "For demo purposes, the open-source version of the elasticsearch package is used.\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "YUj0878jPyz7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "elasticsearch-oss-7.9.2-linux-x86_64.tar.gz: OK\n" ] } ], "source": [ "%%bash\n", "\n", "wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz\n", "wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512\n", "tar -xzf elasticsearch-oss-7.9.2-linux-x86_64.tar.gz\n", "sudo chown -R daemon:daemon elasticsearch-7.9.2/\n", "shasum -a 512 -c elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512 " ] }, { "cell_type": "markdown", "metadata": { "id": "vAzfu_WiEs4F" }, "source": [ "Run the instance as a daemon process" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "n9ujlunrWgRx" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting job # 0 in a separate thread.\n" ] } ], "source": [ "%%bash --bg\n", "\n", "sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "XyUa9r6MgWtW" }, "outputs": [], "source": [ "# Sleep for few seconds to let the instance start.\n", "time.sleep(20)" ] }, { "cell_type": "markdown", "metadata": { "id": "f6qxCdypE1DD" }, "source": [ "Once the instance has been started, grep for `elasticsearch` in the processes list to confirm the availability." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "48LqMJ1BEHm5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "root 144 142 0 21:24 ? 00:00:00 sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch\n", "daemon 145 144 86 21:24 ? 00:00:17 /content/elasticsearch-7.9.2/jdk/bin/java -Xshare:auto -Des.networkaddress.cache.ttl=60 -Des.networkaddress.cache.negative.ttl=10 -XX:+AlwaysPreTouch -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -XX:-OmitStackTraceInFastThrow -XX:+ShowCodeDetailsInExceptionMessages -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dio.netty.allocator.numDirectArenas=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Djava.locale.providers=SPI,COMPAT -Xms1g -Xmx1g -XX:+UseG1GC -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -Djava.io.tmpdir=/tmp/elasticsearch-16913031424109346409 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=data -XX:ErrorFile=logs/hs_err_pid%p.log -Xlog:gc*,gc+age=trace,safepoint:file=logs/gc.log:utctime,pid,tags:filecount=32,filesize=64m -XX:MaxDirectMemorySize=536870912 -Des.path.home=/content/elasticsearch-7.9.2 -Des.path.conf=/content/elasticsearch-7.9.2/config -Des.distribution.flavor=oss -Des.distribution.type=tar -Des.bundled_jdk=true -cp /content/elasticsearch-7.9.2/lib/* org.elasticsearch.bootstrap.Elasticsearch\n", "root 382 380 0 21:24 ? 00:00:00 grep elasticsearch\n" ] } ], "source": [ "%%bash\n", "\n", "ps -ef | grep elasticsearch" ] }, { "cell_type": "markdown", "metadata": { "id": "wBuRpiyf_kNS" }, "source": [ "query the base endpoint to retrieve information about the cluster." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "ILyohKWQ_XQS" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"name\" : \"d1bc7d054c69\",\n", " \"cluster_name\" : \"elasticsearch\",\n", " \"cluster_uuid\" : \"P8YXfKqYS-OS3k9CdMmlsw\",\n", " \"version\" : {\n", " \"number\" : \"7.9.2\",\n", " \"build_flavor\" : \"oss\",\n", " \"build_type\" : \"tar\",\n", " \"build_hash\" : \"d34da0ea4a966c4e49417f2da2f244e3e97b4e6e\",\n", " \"build_date\" : \"2020-09-23T00:45:33.626720Z\",\n", " \"build_snapshot\" : false,\n", " \"lucene_version\" : \"8.6.2\",\n", " \"minimum_wire_compatibility_version\" : \"6.8.0\",\n", " \"minimum_index_compatibility_version\" : \"6.0.0-beta1\"\n", " },\n", " \"tagline\" : \"You Know, for Search\"\n", "}\n" ] } ], "source": [ "%%bash\n", "\n", "curl -sX GET \"localhost:9200/\"" ] }, { "cell_type": "markdown", "metadata": { "id": "4CfKVmCvwcL7" }, "source": [ "### Explore the dataset\n", "\n", "For the purpose of this tutorial, lets download the [PetFinder](https://www.kaggle.com/c/petfinder-adoption-prediction) dataset and feed the data into elasticsearch manually. The goal of this classification problem is predict if the pet will be adopted or not.\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "XkXyocIdKRSB" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip\n", "1671168/1668792 [==============================] - 0s 0us/step\n" ] } ], "source": [ "dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'\n", "csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'\n", "tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,\n", " extract=True, cache_dir='.')\n", "pf_df = pd.read_csv(csv_file)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "nC-yt_c9u0sH" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TypeAgeBreed1GenderColor1Color2MaturitySizeFurLengthVaccinatedSterilizedHealthFeeDescriptionPhotoAmtAdoptionSpeed
0Cat3TabbyMaleBlackWhiteSmallShortNoNoHealthy100Nibble is a 3+ month old ball of cuteness. He ...12
1Cat1Domestic Medium HairMaleBlackBrownMediumMediumNot SureNot SureHealthy0I just found it alone yesterday near my apartm...20
2Dog1Mixed BreedMaleBrownWhiteMediumMediumYesNoHealthy0Their pregnant mother was dumped by her irresp...73
3Dog4Mixed BreedFemaleBlackBrownMediumShortYesNoHealthy150Good guard dog, very alert, active, obedience ...82
4Dog1Mixed BreedMaleBlackNo ColorMediumShortNoNoHealthy0This handsome yet cute boy is up for adoption....32
\n", "
" ], "text/plain": [ " Type Age ... PhotoAmt AdoptionSpeed\n", "0 Cat 3 ... 1 2\n", "1 Cat 1 ... 2 0\n", "2 Dog 1 ... 7 3\n", "3 Dog 4 ... 8 2\n", "4 Dog 1 ... 3 2\n", "\n", "[5 rows x 15 columns]" ] }, "execution_count": 11, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "pf_df.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "FTFL8nmnGVOc" }, "source": [ "For the purpose of the tutorial, modifications are made to the label column.\n", "0 will indicate the pet was not adopted, and 1 will indicate that it was.\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "c6Cg22bU0-na" }, "outputs": [], "source": [ "# In the original dataset \"4\" indicates the pet was not adopted.\n", "pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)\n", "\n", "# Drop un-used columns.\n", "pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "klnNOM5oGtH1" }, "outputs": [ { "data": { "text/plain": [ "(11537, 14)" ] }, "execution_count": 13, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "# Number of datapoints and columns\n", "len(pf_df), len(pf_df.columns)" ] }, { "cell_type": "markdown", "metadata": { "id": "tF5K9xtmlT2P" }, "source": [ "### Split the dataset\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "n-ku_X0Wld59" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of training samples: 8075\n", "Number of testing sample: 3462\n" ] } ], "source": [ "train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)\n", "print(\"Number of training samples: \",len(train_df))\n", "print(\"Number of testing sample: \",len(test_df))\n" ] }, { "cell_type": "markdown", "metadata": { "id": "wwP5U4GqmhoL" }, "source": [ "### Store the train and test data in elasticsearch indices\n", "\n", "Storing the data in the local elasticsearch cluster simulates an environment for continuous remote data retrieval for training and inference purposes." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "YhwFImSqncLE" }, "outputs": [], "source": [ "ES_NODES = \"http://localhost:9200\"\n", "\n", "def prepare_es_data(index, doc_type, df):\n", " records = df.to_dict(orient=\"records\")\n", " es_data = []\n", " for idx, record in enumerate(records):\n", " meta_dict = {\n", " \"index\": {\n", " \"_index\": index, \n", " \"_type\": doc_type, \n", " \"_id\": idx\n", " }\n", " }\n", " es_data.append(meta_dict)\n", " es_data.append(record)\n", "\n", " return es_data\n", "\n", "def index_es_data(index, es_data):\n", " es_client = Elasticsearch(hosts = [ES_NODES])\n", " if es_client.indices.exists(index):\n", " print(\"deleting the '{}' index.\".format(index))\n", " res = es_client.indices.delete(index=index)\n", " print(\"Response from server: {}\".format(res))\n", "\n", " print(\"creating the '{}' index.\".format(index))\n", " res = es_client.indices.create(index=index)\n", " print(\"Response from server: {}\".format(res))\n", "\n", " print(\"bulk index the data\")\n", " res = es_client.bulk(index=index, body=es_data, refresh = True)\n", " print(\"Errors: {}, Num of records indexed: {}\".format(res[\"errors\"], len(res[\"items\"])))\n", " " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "4wBiwCRBNGAu" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "creating the 'train' index.\n", "Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'train'}\n", "bulk index the data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/base.py:190: ElasticsearchDeprecationWarning: [types removal] Specifying types in bulk requests is deprecated.\n", " warnings.warn(message, category=ElasticsearchDeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Errors: False, Num of records indexed: 8075\n", "creating the 'test' index.\n", "Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'test'}\n", "bulk index the data\n", "Errors: False, Num of records indexed: 3462\n" ] } ], "source": [ "train_es_data = prepare_es_data(index=\"train\", doc_type=\"pet\", df=train_df)\n", "test_es_data = prepare_es_data(index=\"test\", doc_type=\"pet\", df=test_df)\n", "\n", "index_es_data(index=\"train\", es_data=train_es_data)\n", "time.sleep(3)\n", "index_es_data(index=\"test\", es_data=test_es_data)" ] }, { "cell_type": "markdown", "metadata": { "id": "2mOrfOYrHpQj" }, "source": [ "## Prepare tfio datasets\n", "\n", "Once the data is available in the cluster, only `tensorflow-io` is required to stream the data from the indices. The `elasticsearch.ElasticsearchIODataset` class is utilized for this purpose. The class inherits from `tf.data.Dataset` and thus exposes all the useful functionalities of `tf.data.Dataset` out of the box.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "58q52py93jEf" }, "source": [ "### Training dataset\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "id": "HHOcitbW2_d1" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Connection successful: http://localhost:9200/_cluster/health\n" ] } ], "source": [ "BATCH_SIZE=32\n", "HEADERS = {\"Content-Type\": \"application/json\"}\n", "\n", "train_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(\n", " nodes=[ES_NODES],\n", " index=\"train\",\n", " doc_type=\"pet\",\n", " headers=HEADERS\n", " )\n", "\n", "# Prepare a tuple of (features, label)\n", "train_ds = train_ds.map(lambda v: (v, v.pop(\"target\")))\n", "train_ds = train_ds.batch(BATCH_SIZE)" ] }, { "cell_type": "markdown", "metadata": { "id": "Me0zgeCQIsKH" }, "source": [ "### Testing dataset" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "2R-I9hUgIcXR" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Connection successful: http://localhost:9200/_cluster/health\n" ] } ], "source": [ "test_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(\n", " nodes=[ES_NODES],\n", " index=\"test\",\n", " doc_type=\"pet\",\n", " headers=HEADERS\n", " )\n", "\n", "# Prepare a tuple of (features, label)\n", "test_ds = test_ds.map(lambda v: (v, v.pop(\"target\")))\n", "test_ds = test_ds.batch(BATCH_SIZE)" ] }, { "cell_type": "markdown", "metadata": { "id": "7fAC5HDERL4-" }, "source": [ "### Define the keras preprocessing layers\n", "\n", "As per the [structured data tutorial](https://www.tensorflow.org/tutorials/structured_data/preprocessing_layers), it is recommended to use the [Keras Preprocessing Layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing) as they are more intuitive, and can be easily integrated with the models. However, the standard [feature_columns](https://www.tensorflow.org/api_docs/python/tf/feature_column) can also be used.\n", "\n", "For a better understanding of the `preprocessing_layers` in classifying structured data, please refer to the [structured data tutorial](https://www.tensorflow.org/tutorials/structured_data/preprocessing_layers)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "CBzR7Li4SaQS" }, "outputs": [], "source": [ "def get_normalization_layer(name, dataset):\n", " # Create a Normalization layer for our feature.\n", " normalizer = preprocessing.Normalization()\n", "\n", " # Prepare a Dataset that only yields our feature.\n", " feature_ds = dataset.map(lambda x, y: x[name])\n", "\n", " # Learn the statistics of the data.\n", " normalizer.adapt(feature_ds)\n", "\n", " return normalizer\n", "\n", "def get_category_encoding_layer(name, dataset, dtype, max_tokens=None):\n", " # Create a StringLookup layer which will turn strings into integer indices\n", " if dtype == 'string':\n", " index = preprocessing.StringLookup(max_tokens=max_tokens)\n", " else:\n", " index = preprocessing.IntegerLookup(max_values=max_tokens)\n", "\n", " # Prepare a Dataset that only yields our feature\n", " feature_ds = dataset.map(lambda x, y: x[name])\n", "\n", " # Learn the set of possible values and assign them a fixed integer index.\n", " index.adapt(feature_ds)\n", "\n", " # Create a Discretization for our integer indices.\n", " encoder = preprocessing.CategoryEncoding(max_tokens=index.vocab_size())\n", "\n", " # Prepare a Dataset that only yields our feature.\n", " feature_ds = feature_ds.map(index)\n", "\n", " # Learn the space of possible indices.\n", " encoder.adapt(feature_ds)\n", "\n", " # Apply one-hot encoding to our indices. The lambda function captures the\n", " # layer so you can use them, or include them in the functional model later.\n", " return lambda feature: encoder(index(feature))\n" ] }, { "cell_type": "markdown", "metadata": { "id": "4s9c7e2hbIET" }, "source": [ "Fetch a batch and observe the features of a sample record. This will help in defining the keras preprocessing layers for training the `tf.keras` model." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "CRukoDPKbKqu" }, "outputs": [ { "data": { "text/plain": [ "{'Age': 2,\n", " 'Breed1': b'Tabby',\n", " 'Color1': b'Black',\n", " 'Color2': b'Cream',\n", " 'Fee': 0,\n", " 'FurLength': b'Short',\n", " 'Gender': b'Male',\n", " 'Health': b'Healthy',\n", " 'MaturitySize': b'Small',\n", " 'PhotoAmt': 4,\n", " 'Sterilized': b'No',\n", " 'Type': b'Cat',\n", " 'Vaccinated': b'No'}" ] }, "execution_count": 20, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "ds_iter = iter(train_ds)\n", "features, label = next(ds_iter)\n", "{key: value.numpy()[0] for key,value in features.items()}" ] }, { "cell_type": "markdown", "metadata": { "id": "LI0Mmp_dT7yu" }, "source": [ "Choose a subset of features." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "M0X9LEKoUfbU" }, "outputs": [], "source": [ "all_inputs = []\n", "encoded_features = []\n", "\n", "# Numeric features.\n", "for header in ['PhotoAmt', 'Fee']:\n", " numeric_col = tf.keras.Input(shape=(1,), name=header)\n", " normalization_layer = get_normalization_layer(header, train_ds)\n", " encoded_numeric_col = normalization_layer(numeric_col)\n", " all_inputs.append(numeric_col)\n", " encoded_features.append(encoded_numeric_col)\n", "\n", "# Categorical features encoded as string.\n", "categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize',\n", " 'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1']\n", "for header in categorical_cols:\n", " categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string')\n", " encoding_layer = get_category_encoding_layer(header, train_ds, dtype='string',\n", " max_tokens=5)\n", " encoded_categorical_col = encoding_layer(categorical_col)\n", " all_inputs.append(categorical_col)\n", " encoded_features.append(encoded_categorical_col) " ] }, { "cell_type": "markdown", "metadata": { "id": "x84lZJY164RI" }, "source": [ "## Build, compile and train the model\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "uuHtpAMqLqmv" }, "outputs": [], "source": [ "# Set the parameters\n", "\n", "OPTIMIZER=\"adam\"\n", "LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)\n", "METRICS=['accuracy']\n", "EPOCHS=10\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "7lBmxxuj63jZ" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACn8AAAVzCAYAAAAB6KpLAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ3hVVdr/8d9JzwlJ6EU6QVCkDAg+SWijjg0GpKWM4DwwFkAcgmKhWFABcVRABYZBAR9llCSgIorKWBCRoghIUwQUAekloSSYtv4v+JMhISQnyTlnn/L9XFdesM/aZ997rXutva/r3OxtM8YYAQAAAAAAAAAAAAAAAAAAwBukB1gdAQAAAAAAAAAAAAAAAAAAABxH8ScAAAAAAAAAAAAAAAAAAIAXofgTAAAAAAAAAAAAAAAAAADAi1D8CQAAAAAAAAAAAAAAAAAA4EWCrA7ggoSEBKtDgJ958MEHFRcXZ3UYPmfq1Klas2aN1WEAcLH09HSrQ/AIa9as0dSpU60OAwAsFxcXpwcffNDqMAAAAAAAAAAAAAC/4TFP/ly0aJH2799vdRjwE4sWLdK+ffusDsMnrVmzRmvXrrU6DAAusn//fi1atMjqMDzGvn376A8Afm/t2rX85x8AAAAAAAAAAADAzTzmyZ+S9MADDygxMdHqMOAHbDab1SH4tNjYWJ4KCPiotLQ0JSUlWR2Gx2HNA+DPeIsDAAAAAAAAAAAA4H4e8+RPAAAAAAAAAAAAAAAAAAAAlI3iTwAAAAAAAAAAAAAAAAAAAC9C8ScAAAAAAAAAAAAAAAAAAIAXofgTAAAAAAAAAAAAAAAAAADAi1D8CQAAAAAAAAAAAAAAAAAA4EW8svgzOTlZNpvNob8PPvjA6nBLtHbtWl199dUKCAiQzWZTnTp1NHHiRKvDKmLx4sVq1qxZYV/WrVtXgwYNsjos4LKWLVum6OhoLV261NI4XnjhBdWuXVs2m02zZ892yTGeffZZRUdHy2azadOmTS45hjN8//33Sk5OVtOmTRUaGqqaNWuqXbt2lVrvXD3OVq993jK2AKS7775bkZGRl8xXT7keXWzHjh36+9//rmuuuUaRkZEKCgpSdHS0WrRooZ49e2rNmjVWh+g2xdf5kv6aNGlidZhFeFOuAQAAAAAAAAAAAHAPryz+lKTly5crIyNDubm5OnjwoCSpd+/eysnJ0dmzZ3XkyBHdc889Fkd5ebGxsfrhhx908803Szr/g/xjjz1mcVRF9e/fXz///LNiYmIUHR2tQ4cOacGCBVaHBVyWMcbqECRJDz30kFavXu3SY4wdO1b/+te/XHqMytqyZYvi4+NVt25dffHFF8rMzNTq1at16623asWKFRX+XlePs9VrnzeMLYDzXnvtNb366quXbPeU69EFc+fOVZs2bbR582ZNnTpV+/bt09mzZ7Vx40Y988wzysjI0JYtW6wO022Kr/PGGBljlJeXp6ysLB0+fFh2u93qMIvwllwDAAAAAAAAAAAA4D5BVgdQETabTZ07d77kR1mbzabg4GAFBwfLbrfr2muvtShC75Sdna0bb7zR5UVrQHmUJy979uypzMxMN0QFR7zwwguqWrWqpk+fXritRYsWeuaZZ9S/f/8ibRlnwHFcrz2fJ61Ta9eu1dChQ9W9e3d98sknCgr67+1/s2bN1KxZM1WtWlU7d+50+Dt9NQcDAwMVHh6u8PBwtWjRwupwHOJJuQYAAAAAAAAAAADAvbyy+PPtt992qN3QoUNdHIlvmTt3ro4cOWJ1GEARVualMUaLFi3SyZMnde+991oSgzc7fvy4MjMzdeLECVWvXr1we0hIyCWvp2WcAcc5a76Q+85hs9lcfozKjNXEiROVn5+vZ599tkjh58VuueUW3XLLLQ5/pz/k4HvvvWd1CJfw9FwDAAAAAAAAAAAA4F5e+9p3R919992y2Wyy2WyKiYnRxo0bJUlDhgyR3W5XdHS03n//fb388ssKCwtT7dq1NWzYMNWrV09hYWGKj4/XunXrinxnfn6+nnjiCTVq1Ejh4eFq27atUlNTCz//+OOPFRUVpUmTJpU73lmzZikiIkJ2u11LlizRbbfdpqioKDVo0KBI0auj8Y4cOVIhISGqW7du4bYRI0YoIiJCNptNx44dkySNGjVKo0eP1u7du2Wz2dS8efNyxy5JX331lVq1aqXo6GiFhYWpTZs2+uSTTyQ5PhZS6X38j3/8Q3a7XZGRkTpy5IhGjx6t+vXra8eOHRWKGdb78ssvdd1118lutysqKkpt2rTRqVOnSszLy43/3Llz1ahRI9lsNs2YMUOS4/NJOp9zkydPVsuWLRUeHq6aNWuqadOmmjx5shITE51ynsYYTZ06VVdffbVCQ0NVrVo19enTRz/++GOF2hV3+PBhNWnSREFBQbr11lslOb4GlGcNdHSN69Spk86ePasbbrhBX3/99WXb+cI4+8rYwn3efPNNdezYUWFhYYqIiFCTJk30zDPPSCr9Wnq563VZ9yaO5r4jOXq5+dm1a1eHr/OOKu28yjP3y+rz8szh559/Xi1btlRoaKiio6P18MMPF2mzatUqt6xTjqzFOTk5+uyzz1SjRg1dd911Dvc7OViUv+caAAAAAAAAAAAAAA9lPIQkk5qaWqF9Dx48aCSZ22+/vcTP+/fvbwIDA81vv/1WZPsdd9xh3n///cJ/Dx061ERERJjt27ebc+fOmW3btplOnTqZyMhIs3fv3sJ2Dz30kAkNDTWLFi0yJ0+eNOPGjTMBAQHm22+/NcYY88EHH5jIyEjz9NNPlxn7LbfcYiSZkydPFm4bP368kWQ+++wzk5mZaY4cOWK6du1qIiIiTE5OTrnjHThwoKlTp06R4z7//PNGkjl69GiRfoqJibkkxpiYGBMdHV3muRhjTHp6upkwYYI5ceKEOX78uImNjTU1atQocgxHxqKsPr7QRykpKeaVV14x/fr1Mz/88INDMRpTuXxD6QYMGGAGDBjgcPszZ86YqKgo89xzz5ns7Gxz6NAh069fv8LcLCkvLzf++/btM5LMK6+8cknbsubTpEmTTGBgoFmyZInJysoy3333nalTp4754x//WKF+2Llzp5Fk/vnPfxZue+KJJ0xISIh58803TUZGhtm8ebPp0KGDqVmzpjl06FC527399ttGktm4caMxxpicnBzTv39/s2TJkiKxOLoGOLqmOLrGZWVlmY4dOxpJRpJp1aqVee6558zx48cvaeuJ41yetc9XxtYRqampxoNuHyxXkf6YNm2akWSeffZZc/z4cXPixAnzr3/9ywwcONAY49i1tPh8Keu66WjuO5qjl5ufjl7nHeXo/UBZc7+sPi/PedtsNvPiiy+akydPmqysLDNz5swi89UY45Z1ypG1+KeffjKSTGxsbLn63V9ysKR1PiUlxWzZsuWSPvHnXHNEee//AAAAAAAAAAAAAFRamsdUb7iy+PPTTz81kszEiRMLt2VmZporr7zS5OXlFW4bOnToJT8Af/vtt0aSeeqpp4wxxmRnZxu73W6Sk5ML22RlZZnQ0FBz3333lTv20oo/s7OzC7dd+LF3165d5YrXGPcWfxY3efJkI8kcOXLEGOPYWDjSxyX1UXlQ/Ok65f3xf+vWrUaS+eCDD0r8vLSiwOLjX1oBRFnzqVOnTua6664r8n333nuvCQgIML///rvD53NB8eLPrKwsU6VKlSJ5bYwx33zzjZFUWLzjaDtjihYI5ubmmr/85S/mo48+uiSW8hQIOrKmlEdOTo556aWXzFVXXVVYBFq7dm2zYsWKIu08cZwdXfv8bWwp/iyqvP2Rk5Njqlataq6//voi2/Py8sz06dNL3Kf4tbT4fHHkuulI7pcnRy83Px2953JERe8His/9svq8PHPYbrebm266qUi74sXaxnjO9Wj9+vVGkvnTn/5Urv2K89UcjImJKbw2XfxXWvEnuVYyij8BAAAAAAAAAAAAt0vz+de+S9INN9ygFi1aaN68eTLGSJIWLlyo5ORkBQYGlrpvx44dZbfbC1/FuGPHDmVlZal169aFbcLDw1W3bt0yX9tbGSEhIZKk3NzccsVrteDgYEnnXyspOTYWVvUxrNGsWTPVrl1bgwYN0oQJE7Rnzx6XH7Ok+XTu3LnCnLwgPz9fwcHBZa4Tjti2bZvOnDmjjh07FtneqVMnhYSEFL5+29F2xeO84447VLt27cJXgjtLZdeU4OBgjRw5Uj/88IPWrl2rPn366MiRI0pISNDJkyedGmtx7hpnfx1bVMzmzZuVkZGhW265pcj2wMBApaSklLhP8WtpcY5cNx3J/YrkaHGVueeqyHmVpPjcL6vPHT3vXbt2KSsrSzfeeGO5zqM0rl6nqlSpIknKysqqVJy+nIPR0dEyxhT+XW4eloRcAwAAAAAAAAAAAGAlvyj+tNlsGjZsmH7++Wd99tlnkqQ33nhDd911l0P7h4aG6ujRo5Kks2fPSpIee+wx2Wy2wr9ff/210j+sO8vF8brbhx9+qD/+8Y+qVauWQkND9cgjjxT53JGx8IY+hvOEh4fr888/V5cuXTRp0iQ1a9ZMycnJys7OdmscPXr00HfffaclS5YoOztb69ev13vvvac///nPTimAyMjIkPTfQpyLVa1aVadPny5Xu4vdf//92rlzp2bPnq3t27dXOtbinLWm/M///I/effddDR8+XEePHtUXX3zhhOjKxxXjzNiiPE6dOiXp/JhfTlnX0uIcuW46kvsVydHiKnvPVd7zckRZfe7oee/fv1+SVKtWLcdPogKcuU41adJEYWFh+umnn8q1nz/n4PTp04sUsZaHP+caAAAAAAAAAAAAAPfzi+JPSRo8eLDCwsL02muvaceOHYqKilLjxo3L3C83N1cZGRlq0KCBpP/+CDtt2rQiTwkyxmjNmjUuPQdHFI/X1VauXKlp06ZJkvbu3au+ffuqbt26WrdunTIzM/Xcc89dsk9ZY+HpfQznu+aaa7R06VIdOHBAjz76qFJTU/XCCy+4NYYJEybohhtu0ODBgxUVFaV+/fopMTFRr776qlO+/0IhSEmFKxfPWUfbXSwxMVH/+c9/VLVqVf31r39VXl6eU2KWKrem9O/fv8RY7rzzTkmVfxJdRThrnC9e+/xxbFFxV1xxhSTp2LFjJX7u6LX0Yo5cNx3J/YrkaEkqes9VkfNyRFl97uh5h4WFSZJ+//13x0+iApx5PQoNDdUtt9yiY8eO6euvv75suxMnTujuu++WRA5Whj/nGgAAAAAAAAAAAAD3C7I6AHepVq2akpKStHDhQkVGRuqee+5xaL8VK1bIGKPY2FhJUsOGDRUWFqZNmza5MtwKKx6vJAUFBZX5uviK+u677xQRESFJ2rJli3Jzc3XfffepWbNmks4/fam4ssbC0/sYznXgwAFlZGSoVatWqlWrlp599lktX77cJU85LM22bdu0e/duHT16VEFBzl8aW7durSpVqmj9+vVFtq9bt045OTm69tpry9XuYtdff71q1qypOXPm6Pbbb9fEiRM1YcKEws8rswaUtKY46vfff9f27dvVtm3bItt37NghSZdsdwdnjfPFa58/ji0qrkmTJqpevbqWL1+u8ePHX/K5o9fSizly3XQk9yuSoyWp6D1Xcc66Hyirz8szhwMCAvTll19q+PDhlYqpNM6+Hk2YMEEff/yxHnzwQa1YsULh4eGXtNm6dWvhscjB8w4ePKhx48Zp/vz5Du/j77kGAAAAAAAAAAAAwL385smfkjR8+HD9/vvv+uCDD9SrV68S2xQUFOjkyZPKy8vT5s2bNWrUKDVq1EiDBw+WdP5JPEOGDNHbb7+tWbNm6dSpU8rPz9f+/ft18OBBSdJHH32kqKgoTZo0yeXnVFa8ktS8eXOdOHFC7733nnJzc3X06FH9+uuvl3xX9erVdeDAAe3Zs0enT58utaAoNzdXhw8f1ooVKwoLoBo1aiRJ+vTTT3Xu3Dnt3LlT69atK3H/0sbCkT6G7zhw4ICGDRumH3/8UTk5Odq4caN+/fXXwoK08uRlZdx///1q1KiRzpw545LvDwsL0+jRo/XOO+9owYIFOnXqlLZs2aLhw4erXr16Gjp0aLnalaR3794aPHiwJk2apO+++65wu6NrgOTYmlKeNa5v375KS0tTRkaGMjMztWTJEo0ZM0a33357keJPbxnnktY+XxpbuF5oaKjGjRunlStXauTIkfrtt99UUFCg06dPa/v27Q5dS4vPl8DAwDKvm47kfmVytDhH7rnK4qz7gbL63NHzrlWrlvr3769FixZp7ty5OnXqlDZv3qw5c+ZU6Pwux9F1ytG1+A9/+IP+/e9/a+vWreratauWLVumzMxM5ebm6pdfftGrr76qu+66S8HBwZIcu5/z5Rw0xig7O1uLFy9WVFSUw/tJvptrAAAAAAAAAAAAADyU8RCSTGpqarn2OXXqlOnWrZupXr26kWQCAgJM8+bNzaRJky67T/v27c3YsWNL/Gzo0KEmODjY1K9f3wQFBZmoqCjTp08fs3v37iLtfv/9d/Poo4+aRo0amaCgIFOrVi3Tv39/s23bNmOMMcuWLTORkZFm4sSJl41j7dq15pprrjEBAQFGkqlbt66ZNGmSmTlzprHb7UaSufLKK83u3bvNnDlzTFRUlJFkGjdubH766adyxXv8+HFz/fXXm7CwMNO0aVPz97//3Tz88MNGkmnevLnZu3evMcaYDRs2mMaNG5vw8HDTpUsX889//tPExMQYSaX+vfPOO4XHevTRR0316tVN1apVTUJCgpkxY4aRZGJiYgqP48hYlNbHzz33nAkPDzeSTMOGDc2bb7552X6+nIrkGxwzYMAAM2DAAIfb79mzx8THx5tq1aqZwMBAc8UVV5jx48ebvLw8Y8ylefnggw+WOP6vvPKKqVu3rpFk7Ha76d27d7nm0+eff25q1KhRJLeDg4PN1VdfbRYvXlyuPnjxxRdNnTp1jCQTERFh+vXrZ4wxpqCgwDz//PPmyiuvNMHBwaZatWqmb9++ZseOHUX2d6Td4sWLTbVq1Ywk06RJE3PkyBFz6tQp07BhQyPJVKlSxbzxxhvGGMfXAEfXFEfWOGOMWb58uUlKSjIxMTEmNDTUhISEmJYtW5oJEyaYc+fOFWnrSeP8zjvvlHvt85WxdURqaqrxoNsHy1W0P2bMmGHatGljwsLCTFhYmGnfvr2ZOXOmMabsa2nx+XLo0KEy700cXeMcyVFHr8OlXecdVdp5lWful9Xnjs7h06dPm7vvvtvUqFHDVKlSxXTp0sU88cQTRpJp0KCB+f777912PXJ0Lb5g79695qGHHjJt2rQxVapUMYGBgaZq1aqmffv25q677jJff/11YVtfz0FH1/nHHnvMGGP8PtccUd77PwAAAAAAAAAAAACVlmYzxpjylYu6hs1mU2pqqhITE116nJ49e2rGjBlq2rTpJZ8NGzZM6enpOn78uEtjcBZvi7e40sbC1dyVb/4oISFBkpSenm5xJOUza9Ys7dy5U9OmTSvclpOTozFjxmjWrFk6efJkia/K9SXevqY4wl/H2Zljm5aWpqSkJHnI7YPlvKU/rMh9K6/z3sxX1yly0PM4c0y89f4PAAAAAAAAAAAA8GLpQVZH4Gq5ubmFr7HcvHmzwsLCSv0BOD8/312hOYU3xVvesQDc5dChQxo5cqQ2bdpUZHtISIgaNWqk3Nxc5ebmemWxTXl505pSXv4+zr48tiidu3Kf63zl+eo6RQ56Hl/NNQAAAAAAAAAAAMCfBFgdgKs9+uij2rlzp3766ScNGTJEzzzzjNUh+S3GAp4qPDxcwcHBmjt3rg4fPqzc3FwdOHBAr732mp544gklJyfrwIEDstlsZf4lJydbfTq4DEfGOSoqyuowAadzV+47cp3/8ccfWUtL4avrlCflIM7z1VwDAAAAAAAAAAAA/InPP/nTbrfrqquuUv369TVz5ky1atWqxHbjxo3T/PnzlZOTo6ZNm+r555/XgAED3Byt47wtXsnxsQDcLTo6WsuXL9fTTz+tFi1a6OzZs6pSpYquueYaTZkyRffee6+CgoI8/rXOleGNa0p5OTLOvsgfxhalc1fuO3Kdv+qqq3x6La0sX12nPCkHcZ6v5hoAAAAAAAAAAADgT2zGQ36Bt9lsSk1NVWJiotWhwA+Qb66TkJAgSUpPT7c4EgCukJaWpqSkJAr4/j/6AwC4/wMAAAAAAAAAAAAskO7zr30HAAAAAAAAAAAAAAAAAADwJRR/AgAAAAAAAAAAAAAAAAAAeBGKPwEAAAAAAAAAAAAAAAAAALwIxZ8AAAAAAAAAAAAAAAAAAABehOJPAAAAAAAAAAAAAAAAAAAALxJkdQAXS0pKUlJSktVhAKikRYsWyWazWR0GALgNax4AfzdgwACrQwAAAAAAAAAAAAD8ikcVf44aNUpxcXFWh+GRkpKS6B8nosjYtWJjY/XAAw9YHQacjHUIkrRmzRpNnz7d6jA8TmpqqtUhwA9cmH/kGzzNtGnTrA4BAAAAAAAAAAAA8DseVfwZFxenxMREq8PwSElJSfSPE1H86VoNGjQgV30Q6xAuoPjzUswLuMv06dPJN3ic9PR0q0MAAAAAAAAAAAAA/E6A1QEAAAAAAAAAAAAAAAAAAADAcRR/AgAAAAAAAAAAAAAAAAAAeBGKPwEAAAAAAAAAAAAAAAAAALwIxZ8AAAAAAAAAAAAAAAAAAABehOJPAAAAAAAAAAAAAAAAAAAAL+ITxZ/Lli1TdHS0li5danUoADwYawUAVAzrJwAAAAAAAAAAAAAAnsUnij+NMVaHAMALsFYAQMWwfgIAAAAAAAAAAAAA4Fl8ovizZ8+eyszMVK9evawORdnZ2YqPj7c6DJdzx3n6S196qtzcXM2cOVNHjhyxOhSnYa2Ao1jj/NO8efO0e/duq8PwSKyf8Gas6QAAAAAAAAAAAAB8kU8Uf3qSuXPn+lSx3OW44zz9pS89VX5+vu6//35dccUVuummm/TGG2/o1KlTVoflM8hvz8Ya55+effZZNW/eXNdee61eeuklHTx40OqQUALmDsqLNR0AAAAAAAAAAACAL/L64s9Vq1apUaNGstlsmjFjhiRp1qxZioiIkN1u15IlS3TbbbcpKipKDRo00Ntvv12478svv6ywsDDVrl1bw4YNU7169RQWFqb4+HitW7eusN3IkSMVEhKiunXrFm4bMWKEIiIiZLPZdOzYMUnSqFGjNHr0aO3evVs2m03NmzeXJH388ceKiorSpEmT3NElJTLGaOrUqbr66qsVGhqqatWqqU+fPvrxxx8L21TmPP2pL/1Nfn6+Pv/8cw0ZMkS1atVSv3799O677+rcuXNWh1YurBW+jTUOzlBQUCBJ2rhxo0aPHq0GDRqoe/fumjdvnjIyMiyOzjqsn3A31nQAAAAAAAAAAAAAKJvXF3926dJFq1evLrLtvvvu0wMPPKDs7GxFRkYqNTVVu3fvVrNmzXTPPfcoNzdX0vkfdAcPHqysrCylpKRoz5492rBhg/Ly8nTTTTdp3759ks4XLiQmJhY5xsyZM/XUU08V2TZ9+nT16tVLMTExMsZo165dks4Xz0n/LSqxwoQJEzR27FiNHz9eR44c0cqVK7Vv3z517dpVhw8fllS58/SnvvRHBQUFKigoUE5OjpYuXar+/furRo0auvPOO7V06dLCOeXJWCt8G2scnMkYo/z8fBUUFOjrr7/Wvffeq1q1aqlHjx564403dObMGatDdCvWT7gbazoAAAAAAAAAAAAAlM3riz/LEh8fr6ioKNWqVUvJyck6e/as9u7dW6RNUFBQ4ZOFWrVqpVmzZun06dOaP3++U2Lo2bOnTp06pccff9wp31de2dnZmjp1qvr166dBgwYpOjpabdq00ezZs3Xs2DHNmTPHacfy9b6ElJeXJ2OMsrKytHDhQvXu3Vu1atXS0KFDtWrVKqvDqzDWCu/FGgdXys/PV35+vvLy8rR8+XINGTJENWrU0IABA7R06dLC4i5/xvoJZ2JNBwAAAAAAAAAAAADHBFkdgDuFhIRIUplPKezYsaPsdnuRV0t6s23btunMmTPq2LFjke2dOnVSSEhIkddbOpsn9+W0adO0aNEiq8PwWI4UNOXl5UmSMjMzNX/+fM2ZM0fh4eFq3Lixtm7dqtatW7s6TJfw17XCW7HGWaP40/B8wfHjx0v9/MK6mJOToyVLlmjx4sWy2+2Szr8avXPnzrLZbC6P05OxfqKyWNMBAAAAAAAAAAAAwDE+/+TPigoNDdXRo0etDsMpMjIyJElVqlS55LOqVavq9OnTLj2+L/UlUBz5bT3WOMA7MXdQEtZ0AAAAAAAAAAAAAHCMXz3501G5ubnKyMhQgwYNrA7FKapWrSpJJf5Y7urz9OS+fOCBB3zyyXXOcu7cOYWHh5faJigoSHl5eYqOjlZSUpLuvPNOvfTSS5LktU/9LA9Pzm9/whpnjbS0NKtDcLqYmBhlZmZe9vPAwEAZYxQUFKRevXrpf//3f3XmzBndcccd6tKlixsj9X7+PHdQOtZ0AAAAAAAAAAAAAHAMxZ8lWLFihYwxio2NLdwWFBRU5itMPVXr1q1VpUoVrV+/vsj2devWKScnR9dee23hNmefp6/1Jc6PX35+vsLDw9WvXz8lJibq1ltvVXBwsCQVFn/6A/LbM7DGwZUCAwMlSTabTTfddJOSk5PVr1+/wqcS+mIRrDswd3A5rOkAAAAAAAAAAAAA4Bhe+y6poKBAJ0+eVF5enjZv3qxRo0apUaNGGjx4cGGb5s2b68SJE3rvvfeUm5uro0eP6tdff73ku6pXr64DBw5oz549On36tHJzc/XRRx8pKipKkyZNcuNZ/VdYWJhGjx6td955RwsWLNCpU6e0ZcsWDR8+XPXq1dPQoUML21bmPCXf70t/FRAQoICAAIWEhKhXr15avHixjh8/rjfffFO9evUqLPz0deS3Z2KNg7PZbDYFBgYqICBAnTt31pw5c3T06FEtW7ZMf/3rX0t8HTVKx9yBo1jTAQAAAAAAAAAAAMAxXl/8OWPGDHXq1EmS9Oijj+r222/XrFmzNG3aNNwXx1IAACAASURBVElS27Zt9fPPP+vVV1/V6NGjJUm33nqrdu7cWfgd586dU5s2bRQeHq6uXbuqRYsW+uKLLxQaGlrY5r777tP111+vv/zlL2rZsqWeeeaZwldix8XFad++fZKk4cOHq3bt2mrVqpV69OihEydOuKUfyvLkk09q8uTJevrpp1WzZk11795dTZo00YoVKxQREVHYrrLn6Q996W8CAwN1ww03aP78+Tp69Kjeeecd9e3bV2FhYVaHVi6sFb6NNQ7OEBBw/raoffv2evHFF7V//359+eWX+tvf/lb4Kmp/xPoJd2NNBwAAAAAAAAAAAICy2YwxxuogpPNP2UpNTVViYqJbjzts2DClp6fr+PHjbj1ueVnVP+XhLX0peUd/Wi03N1dz5sxRQkKCateu7fB+CQkJkqT09HRXhWYJb8pvV/H3eUMOnJeWlqakpCR5yO2DU82bN0/du3dXTEyMw/v4cn84C3PHecg35yEvnctX7/8AAAAAAAAAAAAAD5YeZHUEniA/P9/qEHwGfek7goODNWLECKvD8CjkN8gB3/a3v/3N6hB8FnMHnoi8BAAAAAAAAAAAAODNvP617wAAAAAAAAAAAAAAAAAAAP7Er4s/x40bp/nz5yszM1NNmzbVokWLrA7Ja9GX8GXkN8gBoGKYO/BE5CUAAAAAAAAAAAAAX+DXr32fPHmyJk+ebHUYPoG+hC8jv0EOABXD3IEnIi8BAAAAAAAAAAAA+AK/fvInAAAAAAAAAAAAAAAAAACAt6H4EwAAAAAAAAAAAAAAAAAAwItQ/AkAAAAAAAAAAAAAAAAAAOBFKP4EAAAAAAAAAAAAAAAAAADwIkFWB3CxNWvWWB2CR6N/4C3279+vtLQ0q8OAC7AOgRwoGWse3OHC/CPf4Gn279+vBg0aWB0GAAAAAAAAAAAA4FdsxhhjdRCSZLPZrA4BfiY1NVWJiYlWh+FzEhIStGjRIqvDAOBiHnL7YLm0tDQlJSVZHQYAWG7AgAFKT0+3OgwAAAAAAAAAAADAX6R71JM/KcYrn4SEBEniR9YKoNjYtfjx33+wDvkfih1LRjEsrGSz2biPhqUu3A8AAAAAAAAAAAAAcJ8AqwMAAAAAAAAAAAAAAAAAAACA4yj+BAAAAAAAAAAAAAAAAAAA8CIUfwIAAAAAAAAAAAAAAAAAAHgRij8BAAAAAAAAAAAAAAAAAAC8CMWfAAAAAAAAAAAAAAAAAAAAXoTiTwAAAAAAAAAAAAAAAAAAAC/i9cWfw4YNk81mK/wbNGjQJW0+/fRTjR07VgUFBerbt68aNWqksLAw1a9fX7fffrs2b95c4eMXFBRo2rRpio+Pv+Sz999/X88995zy8/OLbH/vvfeKxFyzZs0KH7+i6DegKE/Ld7geYw44B3MJnsCVeXjBuXPndNVVV+mxxx4r3EYeAgAAAAAAAAAAALCK1xd/SlL16tX10UcfaceOHZo7d26Rz5588km9/PLLGjdunAoKCvTVV1/prbfe0okTJ7Rq1SplZ2erW7duOnDgQLmPu3PnTnXr1k0PPvigsrKyLvm8d+/eCgsL04033qiMjIzC7bfffrv279+vlStXqkePHuU/YSeh34DzPDHf4VqMOeAczCV4Alfm4cXGjx+vHTt2FNlGHgIAAAAAAAAAAACwik8Uf4aHh+vWW29VixYtFBoaWrh9ypQpWrhwodLS0hQZGSlJiouLU5cuXWS329W0aVNNmjRJmZmZev3118t1zO+//15jxozR8OHD9Yc//OGy7VJSUtSuXTv16NFDeXl5kiSbzab69eura9euuvLKK8t/wk5CvwGem+9wHcYccA7mEjyBK/PwYqtXr9bWrVtL/Iw8BAAAAAAAAAAAAGAFnyj+LMmuXbv0+OOP66mnnlJYWJgkKSgoSEuXLi3SrlmzZpKk3bt3l+v727Vrp8WLF2vgwIFFCidLMmHCBG3atEnTp08v1zGsQL/Bn5Dv/ocxB5yDuQRP4Oo8vCA7O1sPP/xwqTlGHgIAAAAAAAAAAABwN58t/nz55ZdljFHv3r1LbZednS1JioqKclks1apVU/fu3TV9+nQZY1x2HGeg3+BPyHf/w5gDzsFcgidwVx6OHz9eI0aMUK1atS7bhjwEAAAAAAAAAAAA4G4+W/z54YcfqmXLlrLb7aW2++abbyRJXbp0cWk87du312+//abvv//epcepLPoN/oR89z+MOeAczCV4Anfk4ddff63du3frjjvuKLMteQgAAAAAAAAAAADAnXyy+PPs2bP65ZdfFBMTc9k2hw8f1sKFC5WSkqK4uLgynxhUWVdeeaUkacuWLS49TmXQb/An5Lv/YcwB52AuwRO4Iw+zs7M1atQozZo1y6H25CEAAAAAAAAAAAAAdwqyOgBXOHLkiIwxpT4FKC4uTmfPnlViYqImTpyo4OBgl8Z0IZbDhw+79DiVQb/Bn5Dv/ocxB5yDuQRP4I48HDdunO69917Vr1/fofbkIQAAAAAAAAAAAAB38sniz3PnzkmSQkNDL9umdu3amjt3rq655hq3xBQeHl4kNk9Ev8GfkO/+hzEHnIO5BE/g6jxctWqVtmzZoqlTpzq8D3kIAAAAAAAAAAAAwJ188rXvF354zc/Pv2ybWrVqqWrVqu4KSTk5OZL+G5snot/gT8h3/8OYA87BXIIncHUezp07V5999pkCAgJks9lks9lUq1YtSdKkSZNks9m0fv36IvuQhwAAAAAAAAAAAADcySeLP2vXri2bzabMzMzLtlm6dKnDr3B0hgux1KlTx23HLC/6Df6EfPc/jDngHMwleAJX5+H8+fNljCnyd/ToUUnS+PHjZYxRx44di+xDHgIAAAAAAAAAAABwJ58s/rTb7WrWrJn2799f4ue7du1SnTp1lJSUdMlnycnJqlOnjjZs2ODUmC7E0qZNG6d+rzPRb/An5Lv/YcwB52AuwROQhwAAAAAAAAAAAAD8nU8Wf0pSz549tW3bNmVnZ1/ymTHmsvvl5OToyJEjWrJkSanfv3btWnXp0kVXXHGF1q1bp++//1716tVT586dtXLlykvaf/vtt6pfv77atm1b/pNxI/oN/oR89z+MOeAczCV4AlfnYXmRhwAAAAAAAAAAAADcKcjqAFzl73//u2bNmqXFixdr0KBBRT678sordfjw4RL3W7Rokf74xz+qcePGpX5/bGysVq1a5VAsx48f12effaaJEyfKZrM5dgIWod/gT8h3/8OYA87BXIIncHUeFlezZs3LFpWShwAAAAAAAAAAAADczSee/Jmdna1PPvlEO3fuVE5OjiSpefPmevrpp/X000/rzJkzDn1Pfn6+3nvvPZ0+fVrJyclOi2/ChAn6wx/+oJEjR0o6/ySiAwcOaNWqVdq1a5fTjlNe9Bv8nSfnO1yDMQecg7kET0AeAgAAAAAAAAAAAPBnPlH8eeLECd16661q0aKF/va3vxVuHzt2rBISEpScnKzMzMwyv2fFihVavHixPvroI9ntdqfENnXqVG3atEnLli1TcHCwJGnJkiWqX7++unbtqg8//NApx6kI+g3w3HyH6zDmgHMwl+AJyEMAAAAAAAAAAAAA/spmLvfuQjez2WxKTU1VYmKi0797+fLl+vzzzzVlyhSnf3dplixZou3bt+uRRx5RYGCg078/ISFBkpSenu7075Z8t98k1+abv3N1XrqKL+e7K3nreEuMeUWlpaUpKSnpsq8+9jf0B3PJE3BfQx5azZvvBwAAAAAAAAAAAAAvle4XxZ++ih9ZK458cx3y0r8w3v6HYsei6A94Au5rYDXuBwAAAAAAAAAAAAC3S/eJ174DAAAAAAAAAAAAAAAAAAD4C4o/AQAAAAAAAAAAAAAAAAAAvAjFnwAAAAAAAAAAAAAAAAAAAF6E4k8AAAAAAAAAAAAAAAAAAAAvEmR1ABebNm2a0tPTrQ7Da6xdu1aSlJCQYHEkQFFr164lL/0E65D/2b9/v9UheCTmAKzGfTRc6ezZswoJCVFwcHCJn69du1axsbFujgoAAAAAAAAAAADwbx5T/DlgwACrQ/A6/MBacQMGDFDDhg2tDsMnxcXFWR0C3Ih1yP80aNCAa/ZFGjZsSH/AcuQgXG3Tpk06efKk2rVrV+I9dGxsLPeAAAAAAAAAAAAAgJvZjDHG6iAAAAAAAJ7p5MmTmjBhgmbOnKkuXbpo1qxZatWqldVhAQAAAAAAAAAAAP4sPcDqCAAAAAAAnqtatWp66aWXtGrVKmVmZqpDhw568skn9fvvv1sdGgAAAAAAAAAAAOC3KP4EAAAAAJQpNjZW3377raZMmaKpU6eqQ4cOWrNmjdVhAQAAAAAAAAAAAH6J4k8AAAAAgEOCgoI0atQobd26VQ0aNFDnzp01dOhQnTlzxurQAAAAAAAAAAAAAL9C8ScAAAAAoFwaN26sjz/+WPPmzVN6erratWunL774wuqwAAAAAAAAAAAAAL9B8ScAAAAAoNxsNpsGDx6sbdu2qW3btvrTn/6k0aNH69y5c1aHBgAAAAAAAAAAAPg8mzHGWB0EAAAAAMC7paena+jQoapXr57efPNNdejQweqQAAAAAAAAAAAAAF+VzpM/AQAAAACVlpCQoA0bNqhmzZqKi4vTlClTVFBQYHVYAAAAAAAAAAAAgE+i+BMAAAAA4BRNmjTRF198oYkTJ2rChAm66aabdPDgQavDAgAAAAAAAAAAAHwOxZ8AAAAAAKcJCAjQww8/rDVr1mjfvn1q166dli1bZnVYAAAAAAAAAAAAgE+h+BMAAAAA4HTt27fXd999p5tvvll//vOflZKSopycHKvDAgAAAAAAAAAAAHwCxZ8AAAAAAJeIjIzUggUL9Oqrr+q1117TDTfcoAMHDlgdFgAAAAAAAAAAAOD1KP4EAAAAALjUXXfdpXXr1uno0aPq0KGDvvzyS6tDAgAAAAAAAAAAALwaxZ8AAAAAAJdr3bq11q9fr27duunGG2/Uc889J2OM1WEBAAAAAAAAAAAAXoniTwAAAACAW0RGRio1NVUvvviiHn/8cfXp00cZGRlWhwUAAAAAAAAAAAB4HZvhUSsAAAAAADdbuXKlkpKSFBUVpcWLF6t169ZWhwQAAAAAAAAAAAB4i3Se/AkAAAAAcLtu3bpp/fr1qlmzpuLi4pSammp1SAAAAAAAAAAAAIDXoPgTAAAAAGCJ+vXr68svv9SIESOUnJysoUOHKicnx+qwAAAAAAAAAAAAAI/Ha98BAAAAAJb797//raFDh+raa69Venq6ateubXVIAAAAAAAAAAAAgKfite8AAAAAAOsNHDhQq1ev1v79+9WpUydt2LDB6pAAAAAAAAAAAAAAj0XxJwAAAADAI7Rt21bffvutWrZsqc6dO+v111+3OiQAAAAAAAAAAADAI1H8CQAAAADwGNWrV9dHH32klJQUDRkyREOHDlVubq7VYQEAAAAAAAAAAAAexWaMMVYHAQAAAABAcQsXLtRdd92lTp06KT09XbVq1bI6JAAAAAAAAAAAAMATpFP8CcArrVmzRvv27bM6DMDjJCYmWh0CPMD+/fu1evVqq8MA4AINGzZUXFyc1WG41aZNm9S3b18FBgbq3XffVZs2bawOCQAAAAAAAAAAALAaxZ8AvFNCQoIWLVpkdRiAx+GyDklKS0tTUlKS1WEAcIEBAwYoPT3d6jDc7tixY0pKStI333yj+fPna8CAAVaHBAAAAAAAAAAAAFgpPcjqCACgovy1+AEoCcV+KAnFwIBvSUhIsDoEy9SsWVMff/yxRo0apcTERD3xxBN68sknZbPZrA4NAAAAAAAAAAAAsATFnwAAAAAAjxccHKyZM2eqXbt2uv/++7V9+3a9/vrrstvtVocGAAAAAAAAAAAAuF2A1QEAAAAAAOCoe++9V59//rm+/PJLde7cWXv37rU6JAAAAAAAAAAAAMDtKP4EAAAAAHiVLl26aM2aNcrJyVFsbKy++eYbq0MCAAAAAAAAAAAA3IriTwAAAACA12nWrJnWrl2rjh07qnv37lqwYIHVIQEAAAAAAAAAAABuQ/EnAAAAAMArRUZG6t1331VKSor++te/asyYMSooKLA6LAAAAAAAAAAAAMDlgqwOAAAAAACAigoMDNSUKVPUvHlzjRgxQrt379b//d//yW63Wx0aAAAAAAAAAAAA4DI8+ROAX1i8eLGaNWsmm81W+BccHKz69etr4MCB+uGHHwrbDhkyRGFhYbLZbDp37pyFUZfsrbfeks1mU3x8vNWhXGLt2rW6+uqrFRAQIJvNpjp16mjixIlWh1VE8VyoW7euBg0aZHVYACrphRdeUO3atWWz2TR79uzC7cuWLVN0dLSWLl3q0uO76zhlKb7G3XnnnZe0ufnmmxUZGanAwEBdc8012rBhgwWROo6xhaPuvvtuLV++XCtWrFC3bt104MABq0MCAAAAAAAAAAAAXIbiTwB+oX///vr5558VExOj6OhoGWOUkZGh2bNna9WqVbruuuu0Y8cOSdL8+fP10EMPWRzx5b311luKiYnRmjVrtGvXLqvDKSI2NlY//PCDbr75ZknSjh079Nhjj1kcVVHFc+HQoUNasGCB1WEBqKSHHnpIq1evvmS7McYtx3fXccpy8RpXo0YNLViwQB9++GGRNsuXL1d6erp69eqlbdu2qUOHDhZF6xjGFuXRvXt3rV27VllZWYqNjdXmzZutDgkAAAAAAAAAAABwCYo/AfitiIgI9erVSy+99JLOnDmjV155xWXHys7OdsqTOo8fP67t27frqaeekiS98cYblf7OkjgrXk/gS+cCoPx69uypzMxM9erVy2nfWdK64orjVNbLL7+sgIAADR06VJmZmVaH43T+PLYoXUxMjL7++ms1b95cnTt31gcffGB1SAAAAAAAAAAAAIDTUfwJwO9dd911kqStW7de8pnNZnPKMebOnasjR45U+nvS0tLUs2dP9e7dW2FhYXrzzTdd8kQyZ8XrCXzpXAB4Bm9ZV+Lj4zVq1Cj99ttvHv1Ea0/iLWOLslWrVk3Lly/XwIED1adPH82YMcPqkAAAAAAAAAAAAACnovgTgN/Ly8uTJIWGhhbZHhAQoA8//FC33XaboqOjVa9ePc2bN69IG2OMpk6dqquvvlqhoaGqVq2a+vTpox9//LGwzahRozR69Gjt3r1bNptNzZs3d3jf4t566y3169dPkZGRuvnmm7Vnzx599dVXl7SbPn26IiIiFBAQoGuvvVZ16tRRcHCwIiIi1KFDB3Xt2lUNGzZUWFiYqlatqkceeaTMeD/++GNFRUVp0qRJ5exhadasWYqIiJDdbteSJUt02223KSoqSg0aNNDbb79d2O7ll19WWFiYateurWHDhqlevXoKCwtTfHy81q1bV9hu5MiRCgkJUd26dQu3jRgxQhEREbLZbDp27Fip51JeX331lVq1aqXo6GiFhYWpTZs2+uSTTyRJd999t2w2m2w2m2JiYrRx40ZJ0pAhQ2S32xUdHa33339fkpSfn68nnnhCjRo1Unh4uNq2bavU1FRJ0j/+8Q/Z7XZFRkbqyJEjGj16tOrXr68dO3ZUKGagPBydo5Jja9fl8nn48OEVXpuk0udiSVatWqVGjRrJZrMVFn7t2rWrcM4W//vPf/5T5nFKWldKOo6jfVWevq/IOjxx4kS1aNFCr732mj799NNS2zK21o0tXCMoKEizZ8/Wiy++qJSUFKWkpKigoMDqsAAAAAAAAAAAAACnoPgTgN9buXKlJKldu3ZFthcUFKhq1apauHCh9uzZow4dOui+++5TVlZWYZsJEyZo7NixGj9+vI4cOaKVK1dq37596tq1qw4fPizpfCFmr169FBMTI2OMdu3a5fC+F9u7d6927Nihbt26SZISEhIklfzq91GjRunhhx+WMUb//Oc/9csvv+jQoUPq1q2bNm7cqLFjx2rjxo06ceKE/vd//1fPP/+8vv/++1Ljzc/PL+yX8rrvvvv0wAMPKDs7W5GRkUpNTdXu3bvVrFkz3XPPPcrNzZV0vqhz8ODBysrKUkpKivbs2aMNGzYoLy9PN910k/bt2yfpfJFoYmJikWPMnDlTTz31VJFtlzuX8jp8+LCSkpK0Z88eHThwQFWqVNHAgQMlSa+99pr69++vwMBAffXVV2rfvr0kaf78+erbt68WLFig3r17S5LGjBmjf/zjH5o2bZoOHjyoXr166Y477tD69ev1yCOP6MEHH9SZM2c0efJkNW3aVLGxsS55sitQnKNzVHJs7bpcPqekpFR4bZJKn4sl6dKli1avXn3J9jFjxujs2bMyxujgwYOqVq2a4uPjdeONN5Z5nJLWlcsdx5G+Kk/fV2QdDg8P1+uvv66AgADdc889Onv27GXbMrbWjS1cKyUlRampqXr11VfVv3//IvdyAAAAAAAAAAAAgLei+BOA3zp79qwWL16shx56SLVr11ZKSsolbeLj4xUdHa1q1aopOTlZv//+u3755RdJUnZ2tqZOnap+/fpp0KBBio6OVps2bTR79mwdO3ZMc+bMueyxK7LvW2+9pT//+c8KDAyUJPXu3VuhoaFKT09Xdnb2ZY/VqlUr2e121ahRQ3/5y18kSY0aNVLNmjVlt9s1aNAgSSr1iaOS1LNnT506dUqPP/54qe3KEh8fr6ioKNWqVUvJyck6e/as9u7dW6RNUFBQ4dPUWrVqpVmzZun06dOaP39+pY5dUQMGDNCTTz6patWqqXr16urdu7eOHz+uo0ePSpKGDx+u/Pz8IvGdOnVK3377rXr06CFJOnfunGbNmqW+ffuqf//+qlq1qh577DEFBwdfcl5TpkzR/fffr8WLF+uqq65y34kCKn2OVmTtulw+V2RtKmsuOqJ58+Z69tlnZbfbJZ0v0MvOzta8efMUEBDgtONUpK/KWh8rug7HxcXpgQce0J49ezRmzBinxcvYOm9s4XoDBgzQZ599ptWrVys+Pl779++3OiQAAAAAAAAAAACgUij+BOB3MjMzZbPZFB0drZSUFPXo0UPffPON6tevX+p+wcHBklT4pK5t27bpzJkz6tixY5F2nTp1UkhISJHXlBdXkX0vvPL9gqioKN188806deqUlixZUvpJ/38hISGS/vuq+5LOy50uxFPWsTt27Ci73V5mgaq7XOizC0/hu+GGG9SiRQvNmzev8EmdCxcuVHJycmGx7o4dO5SVlaXWrVsXfk94eLjq1q3rMecFFFd8jlZm3XPkOOVdm4rPxfJKS0vTu+++q6eeekotW7Z06nEq21eOro+Omjhxolq2bKmZM2dq1apVTo/3chjbSzl7bOG4uLg4rVq1SllZWerSpYu2bdtmdUgAAAAAAAAAAABAhVH8CcDvREdHyxijvLw87d+/X/PmzVPjxo3L/T0ZGRmSpCpVqlzyWdWqVXX69Gmn7bt161Zt2bJFvXr1ks1m+3/s3Wd0VlX+9vHrTiF3EtLoCIReBGkCY4ihqUTKEyCYBiJFRQgooUgVBAQERhTUADZkhp4EMJRQFBQBKSMCwjAjUgQEFJRIj5Cynxf+yRhpCSQ5Kd/PWnnhOec++8reZ++btfJzn/SfVatWSbr1q98LGhcXlyztzJadEhIS1LJlS5UsWVIuLi4aNmxYhvM2m019+/bV0aNHtXHjRkl/jMlzzz2Xfs2NVy2PHj06wxgeP36c188i37ifdS873G0uZsW5c+f00ksvqUmTJhoyZEi2t2N1X/2V3W7X3LlzZbPZ9Oyzz960Y7TVeRlb5Jbq1atr+/bt8vX1VUBAgDZt2mR1JAAAAAAAAAAAAOCeUPwJAPfI29tbkm5Z5HH+/HmVL18+2z67cOFCdenSRcaYDD+JiYlydXXVp59+qp9//vl+fp08LTk5+a59mp02b96s6dOnS5JOnDih4OBglSlTRjt37tSFCxc0derUmz7Ts2dP2e12ffTRRzp48KA8PT0zFBWXLFlSkjR9+vSbxnH79u258nsB9+t+1r37ldm5mFlRUVE6f/685s6dm75Db3a2Y2Vf3U7Tpk01ePBgHTp0SBMmTMhwjrHNvLw4tsia4sWL67PPPlObNm305JNPatGiRVZHAgAAAAAAAAAAALKM4k8AuEcPPfSQihYtql27dmU4vnPnTl2/fl2NGjXKls8aY7RkyRL179//pvv4+PgoNDRUqampBbpwYdOmTTLGyM/PL/2Yk5NTjr0y95tvvpG7u7skaf/+/UpOTla/fv1UpUoV2e122Wy2mz7j4+Oj8PBwxcfHa9q0aerdu3eG8xUqVJDdbtfevXtzJDOQG+5n3btfmZ2LmZGQkKCFCxdqzJgxqlOnTvrxoUOHZls7VvbVnUyYMEG1atXSnj17MhxnbDMvr44tssbFxUWLFi3SoEGD1K1bN40bN87qSAAAAAAAAAAAAECWUPwJAPfIbrdryJAhWr58uRYsWKCLFy9q//79ioyMVNmyZdWnT5/0a4sVK6bTp0/r2LFjunTpkhwdHTP92W3btsnT01OPPvroLXNERkZKyt5Xv/81b3JystauXStPT09NmjQp29q5nbS0NP32229KSUnRvn37NHDgQPn6+qpnz57p11SrVk2JiYmKj49XcnKyfvnlFx0/fjxTv8vtJCcn68yZM9q0aVN68aevr68kacOGDfr999916NAh7dy585afj4yM1LVr17R69WoFBQVlOGe329WrVy8tXrxYs2bN0sWLF5WamqqTJ0/qp59+ymoXAZbIyrqX3bIyF+/k4sWL6tu3rxo0aKARI0ZIkn7//Xft2rVLe/fuzVQ7mVlXcqKvsmMdvvH69z/viJlTeTOLsYVVbDabpkyZounTp2vChAmKiopSWlqa1bEAAAAAAAAAAACAzDEAkA+FhISYkJCQTF//1VdfmRo1ahhJRpIpW7asCQ0NveW1U6dONa6urkaSqV69ujly5IhZ6yFfeAAAIABJREFUsGCB8fHxMZJM+fLlzb///W9jjDFpaWnmjTfeMNWrVzfOzs7Gx8fHBAcHm4MHD2a45+7du03FihWNq6urCQgIMD///HOmPvvcc88Zd3d34+TkZOrXr292796d4b4TJkwwZcuWTf+9ypUrZ2bOnGlmzJhh3NzcjCRTqVIls2XLFjNlyhTj5eVlJJnSpUubhQsXmiVLlpjSpUsbScbHx8csXrz4tnnXrFljPDw8zMSJE2/bzzt27DB16tQxDg4ORpIpU6aMmTRpkpk5c2Z6nht9+sEHHxhPT08jyVSsWNF8//33xhhj+vTpY5ydnU25cuWMk5OT8fT0NJ06dTJHjhzJ0Na5c+dMq1atjN1uN5UrVzYvvfSSGTp0qJFkqlWrZk6cOHHL32X27NmmatWq6X12u5/ly5entzV8+HBTrFgx4+3tbUJDQ010dLSRZKpWrZrezg0NGzY0I0eOvGX/XLt2zQwfPtz4+voaJycnU7JkSfPUU0+ZAwcOZHjuKlSoYObPn3/bfr6VmJgYw9c6bsjq85CVOZqZtet2z/P9rk13mosDBw5M/4y7u7vp3Lmzeffdd02ZMmWMJOPm5mY6dOhgpk2bdtt5365du7u2c+LEiZvWldGjR9/UTmb7Kit9n5l1ePny5elrXIkSJcyLL754y+uGDh1qOnbsmOEYY2vd2GZWVv/9g8xbtmyZcXV1NcHBwebq1atWxwEAAAAAAAAAAADuJtZmjDHZUUQKALkpNDRUkhQXF2dxEmS3vn37Ki4uTufOnbM6yj1p3769oqOjVbly5VxtNzY2VuHh4eJrHRLPA1BQ8e+fnLV9+3Z16NBB1apV06pVq1SiRAmrIwEAAAAAAAAAAAC3E8dr3wEAeU5qaqrVETLtz68E3rdvn+x2e64XfgIAgPvXtGlTffnllzp9+rSaN2+u48ePWx0JAAAAAAAAAAAAuC2KPwEAuA/Dhw/XoUOH9P3336tXr16aMGGC1ZEAAMA9ql27trZt2yZnZ2f5+/tr3759VkcCAAAAAAAAAAAAboniTwBAnjFq1CjNnTtXFy5cUOXKlbV06VKrI92Vm5ubatWqpSeeeELjxo1T7dq1rY4EAADuQ7ly5bR582bVrFlTLVq00JYtW6yOBAAAAAAAAAAAANyE4k8AQJ7x+uuv69q1azLG6IcfflBISIjVke5q4sSJSk1N1YkTJxQUFGR1HAAAkA28vLy0bt06BQYGqnXr1vnif0gBAAAAAAAAAABA4ULxJwAAAAAAf1GkSBEtWrRIvXr1UkREhD788EOrIwEAAAAAAAAAAADpnKwOAAAAAABAXuTo6KjZs2erUqVK6tOnj06dOqVx48ZZHQsAAAAAAAAAAACg+BMAAAAAgDsZPny4ihYtqgEDBigxMVEzZsyQgwMv0gAAAAAAAAAAAIB1KP4EAAAAAOAu+vfvrwceeEBdu3ZVYmKi5s6dK2dnZ6tjAQAAAAAAAAAAoJCi+BNAvrVjxw6FhoZaHQPIE06ePGl1BORBrJFAwbJjxw75+flZHaNQCw4OVkJCgoKDg9WuXTstX75cHh4eVscCAAAAAAAAAABAIcR76gAAmXLy5EktXbrU6hgAUGgtXbqUQm8gD3jssce0YcMG7d27V23atNH58+etjgQAAAAAAAAAAIBCiJ0/AeRbfn5+iouLszpGoREbG6vw8HD6PI+6MT7AnzFfCxabzaZBgwYpLCzM6iiwCLv55h1NmjTRli1b1Lp1a7Vq1Urr1q1T6dKlrY4FAAAAAAAAAACAQoSdPwEAAAAAyKJatWpp69atunLlivz9/XX06FGrIwEAAAAAAAAAAKAQofgTAAAAAIB7ULFiRW3ZskUeHh5q1aqVvv/+e6sjAQAAAAAAAAAAoJCg+BMAAAAAgHtUunRpbdq0SeXLl1ezZs20d+9eqyMBAAAAAAAAAACgEKD4EwAAAACA++Dt7a1PP/1U9evXV6tWrfTVV19ZHQkAAAAAAAAAAAAFHMWfAAAAAADcJ3d3d61atUqPPfaYAgMDtX79eqsjAQAAAAAAAAAAoACj+BMA7mDNmjXy8vLSqlWrrI4CAPkeayqAgs7FxUUxMTHq3LmzOnbsqOXLl1sdCQAAAAAAAAAAAAUUxZ8AcAfGGKsjAECBwZoKoDBwcnLSP//5Tz333HMKDw/XwoULrY4EAAAAAAAAAACAAojiTwC4g/bt2+vChQsKCgqyOoqSkpLk7+9vdYx8Jzf6jbFBTklLS9NPP/1kdYxsw5qKzGDdRkHg4OCgmTNnasSIEXrmmWc0a9YsqyMBAAAAAAAAAACggHGyOgAAIHPmzJmjs2fPWh0j38mNfmNskFNSUlJUoUIFBQQEqHv37urcubO8vb2tjlUgMG/zLtZtFCQTJkxQ0aJF9eKLLyo5OVlRUVFWRwIAAAAAAAAAAEABwc6fAHAbW7dula+vr2w2m6KjoyVJs2bNkru7u9zc3LRixQq1bdtWnp6eKl++vBYvXpz+2XfeeUd2u12lSpVS3759VbZsWdntdvn7+2vnzp3p1w0YMEBFihRRmTJl0o/1799f7u7ustls+vXXXyVJAwcO1JAhQ3TkyBHZbDZVq1ZNkrRu3Tp5enpq0qRJudElucIYo7feeksPPvigXFxc5OPjo06dOum7775Lv+Z++o2xQX6TmpqqzZs3q3fv3ipZsqQ6dOig2NhYJSUlWR0tS1hTCy7WbeDOhg8frilTpmjgwIE8XwAAAAAAAAAAAMg2FH8CwG0EBARo27ZtGY7169dPgwYNUlJSkjw8PBQTE6MjR46oSpUq6t27t5KTkyX9UYDSs2dPXb16VVFRUTp27Jh2796tlJQUtW7dWj/++KOkPwqawsLCMrQxc+ZMjR8/PsOxGTNmKCgoSFWrVpUxRocPH5b0R1GY9MeroQuKcePGaeTIkXrllVd09uxZbd68WT/++KOaNWumM2fOSLq/fmNskB8ZY5SWlqaUlBStWbNGXbp0kbe3t0JCQrRq1Spdv37d6oh3xZpacLFuA3c3bNgwzZw5U2PGjNGIESOsjgMAAAAAAAAAAIACgOJPALhH/v7+8vT0VMmSJRUREaErV67oxIkTGa5xcnJK3wmtdu3amjVrli5duqS5c+dmS4b27dvr4sWLGjNmTLbcz2pJSUl666231LlzZ3Xr1k1eXl6qW7eu3nvvPf3666/64IMPsq0txgb5VWpqqtLS0nT9+nWtXLlSHTp0UPHixdW9e3dt2LAh3xausabmT6zbQOb169dP77//vt544w0KQAEAAAAAAAAAAHDfnKwOAAAFQZEiRSQpfZe622ncuLHc3NwyvAoX/3PgwAFdvnxZjRs3znC8SZMmKlKkSIbX+2a3gjI2cXFxVkdANkpJSbnj+RtrzuXLl7VkyRLNnz9fpUuX1iOPPJIb8XIMa2r+wboNZE3v3r3l7u6uHj166PLly3r33Xdls9msjgUAAAAAAAAAAIB8iOJPAMhlLi4u+uWXX6yOkSedP39eklS0aNGbznl7e+vSpUs52n5BGJu/vvIYhceNQskzZ85o5cqVkqQlS5YoIiLCylg5riDM2/yMdRvIuq5du8rBwUHPPPOMjDGKjo6mABQAAAAAAAAAAABZRvEnAOSi5ORknT9/XuXLl7c6Sp7k7e0tSbcsFsrpfisoY2OMsToCstH169fl4uJy1+uKFCmi69evq0SJEuratauKFy+usWPHFvjCz4Iyb/Mz1m3g3kRERMjFxUURERFKSUnR7Nmz5eDgYHUsAAAAAAAAAAAA5CMUfwJALtq0aZOMMfLz80s/5uTkdNdXGxcWDz30kIoWLapdu3ZlOL5z505dv35djRo1Sj+W3f3G2CC/cXZ2VkpKitzc3BQcHKywsDC1bdtWTk5Oio2NtTpermDeWo91G7h3wcHBio+PV+fOnZWSkqIPP/yQAlAAAAAAAAAAAABkGn9ZAoAclJaWpt9++00pKSnat2+fBg4cKF9fX/Xs2TP9mmrVqikxMVHx8fFKTk7WL7/8ouPHj990r2LFiun06dM6duyYLl26pOTkZK1du1aenp6aNGlSLv5WOcdut2vIkCFavny5FixYoIsXL2r//v2KjIxU2bJl1adPn/Rr76ffJMYG+ZOjo6McHBzk7Oys1q1bKyYmRomJiZo/f76CgoLk5FSw/78e5m3ew7oN3J+2bdvqk08+0aJFi/T8888rLS3N6kgAAAAAAAAAAADIJyj+BIDbiI6OVpMmTSRJw4cPV8eOHTVr1ixNnz5dklSvXj0dPXpUH374oYYMGSJJatOmjQ4dOpR+j99//11169aVq6urmjVrpho1auiLL77I8Brnfv36qVWrVurSpYtq1qypCRMmyNXVVZLUtGlT/fjjj5KkyMhIlSpVSrVr11a7du2UmJiYK/2Q28aOHavXX39dr732mkqUKKEWLVqoUqVK2rRpk9zd3dOvu99+Y2yQ3zg6Oqp169aaP3++EhMTlZCQoNDQUBUpUsTqaJnCmlpwsW4D96dNmzaKj4/X4sWL1a1bN6WmplodCQAAAAAAAAAAAPmAzRhjrA4BAFkVGhoqSYqLi7M4ye317dtXcXFxOnfunNVRskVsbKzCw8NVEL42CtrYSAVrfPA/169fV2BgoLp06aKQkBAVL148U58riM9DQZy3WWWz2RQTE6OwsDCro+Q6xv8P+eHfP7h3n376qTp16qSOHTtq/vz5BX43ZwAAAAAAAAAAANyXOP6aBAA5iJ2b8i7GBvlBkSJFtGnTJqtj5BnM28KN8UdBFxgYqPj4eHXq1EndunXTggULKAAFAAAAAAAAAADAbfHadwAAAAAA8oDAwECtXbtWCQkJevrpp5WSkmJ1JAAAAAAAAAAAAORRFH8CQA4YNWqU5s6dqwsXLqhy5cpaunSp1ZHwfxgbIP9h3hZujD8KmxYtWighIUFr1qxR165dKQAFAAAAAAAAAADALVH8CQA54PXXX9e1a9dkjNEPP/ygkJAQqyPh/zA2QP7DvC3cGH8URs2bN9fKlSuVkJCg7t27KzU11epIAAAAAAAAAAAAyGMo/gQAAAAAII9p1aqV1q1bp5UrV6pr164UgAIAAAAAAAAAACADij8BAAAAAMiDmjVrpvj4eK1cuVLPPfec0tLSrI4EAAAAAAAAAACAPMLJ6gAAAAAAAODWnnjiCa1YsUIdO3aUo6OjPvzwQzk48P9xAgAAAAAAAAAAFHYUfwIAAAAAkIcFBgbqk08+UadOnWSz2fThhx/KZrNZHQsAAAAAAAAAAAAWovgTAAAAAIA8rk2bNvrkk08UHBwsBwcHvf/++xSAAgAAAAAAAAAAFGIUfwLIt5YuXcofvC1AnwP5B/O14AkPD1d4eLjVMWChkJAQqyPAQm3bttWiRYsUHh4uNzc3zZgxw+pIAAAAAAAAAAAAsAjFnwDyLT8/Pw0aNMjqGIVeeHi4Bg4cqKZNm1odpVDbvn07BSC4SUxMjNURkMOmT58uSXwfFhI3xhuFW+fOnbV48WJ16dJFDg4Oeuutt6yOBAAAAAAAAAAAAAtQ/Akg3ypfvrzCwsKsjlHohYeHq2nTpoxFHkDxJ/6KeVnwxcXFSWKsC4sb4w2EhITo2rVr6tGjh9zd3TVhwgSrIwEAAAAAAAAAACCXUfwJAAAAAEA+8/TTT+vatWt6/vnn5eHhoWHDhlkdCQAAAAAAAAAAALmI4k8AAAAAAPKhZ599VlevXtWAAQPk4eGhyMhIqyMBAAAAAAAAAAAgl1D8CQAAAABAPvXiiy/q/Pnz6t+/v1xcXPTss89aHQkAAAAAAAAAAAC5gOJPAAAAAADysdGjR+vy5ct64YUX5OHhodDQUKsjAQAAAAAAAAAAIIdR/AkAAAAAQD43efJkXbx4Ud26dVPRokXVtm1bqyMBAAAAAAAAAAAgBzlYHQAA8qq+ffvKZrOl/3Tr1u2mazZs2KCRI0cqLS1NwcHB8vX1ld1uV7ly5dSxY0ft27fvnttPS0vT9OnT5e/vf9O5lStXaurUqUpNTc1wPD4+PkPmEiVK3HP7eQXjABQeeW0uI+cw1kD2s9lsmjlzpp555hmFhIRo8+bNVkcCAAAAAAAAAABADqL4EwDuoFixYlq7dq0OHjyoOXPmZDg3duxYvfPOOxo1apTS0tK0ZcsWLVq0SImJidq6dauSkpLUvHlznT59OsvtHjp0SM2bN9fgwYN19erVm8536NBBdrtdjz/+uM6fP59+vGPHjjp58qQ2b96sdu3aZf0XzqMYB6Dgy4tzGTmDsQZyjs1m0/vvv6/27dsrKChIu3btsjoSAAAAAAAAAAAAcgjFnwBwB66urmrTpo1q1KghFxeX9ONTpkzRkiVLFBsbKw8PD0lS06ZNFRAQIDc3N1WuXFmTJk3ShQsX9I9//CNLbX777bcaMWKEIiMj1aBBg9teFxUVpfr166tdu3ZKSUmR9Mcf/MuVK6dmzZqpevXqWf+F8yjGASjY8upcRvZjrIGc5+joqAULFujRRx9V27ZtdeDAAasjAQAAAAAAAAAAIAdQ/AkAWXT48GGNGTNG48ePl91ulyQ5OTlp1apVGa6rUqWKJOnIkSNZun/9+vW1bNkyPf300xkKHW9l3Lhx2rt3r2bMmJGlNgoCxgEoGJjLhQdjDeSeIkWKaOnSpapdu7Yef/xxHTx40OpIAAAAAAAAAAAAyGYUfwJAFr3zzjsyxqhDhw53vC4pKUmS5OnpmWNZfHx81KJFC82YMUPGmBxrJy9iHICCgblceDDWQO5yc3PTqlWrVKFCBQUGBur48eNWRwIAAAAAAAAAAEA2ovgTALIoISFBNWvWlJub2x2v+9e//iVJCggIyNE8DRs21KlTp/Ttt9/maDt5DeMAFAzM5cKDsQZyn6enp9auXSsPDw+1bt1aZ86csToSAAAAAAAAAAAAsgnFnwCQBVeuXNEPP/ygqlWr3vaaM2fOaMmSJYqKilLTpk3vusPZ/apevbokaf/+/TnaTl7COAAFA3O58GCsAeuUKFFCGzdulIODgwIDA5WYmGh1JAAAAAAAAAAAAGQDJ6sDAEB+cvbsWRlj7rhrWdOmTXXlyhWFhYVp4sSJcnZ2ztFMN7IUpp2cGAegYGAuFx6MNWCt0qVL67PPPlOzZs3Uvn17ffbZZypatKjVsQAAAAAAAAAAAHAfKP4EgCz4/fffJUkuLi63vaZUqVKaM2eO6tSpkyuZXF1dM2QrDBgHoGBgLhcejDVgvQoVKuizzz5T8+bN1bFjRyUkJMhut1sdCwAAAAAAAAAAAPeI174DQBbcKBRJTU297TUlS5aUt7d3bkXS9evXJf0vW2HAOAAFA3O58GCsgbyhevXqWr9+vfbu3avw8HAlJydbHQkAAAAAAAAAAAD3iOJPAMiCUqVKyWaz6cKFC7e9ZtWqVSpXrlyuZbqRpXTp0rnWptUYB6BgYC4XHox19tm3b5/CwsL0r3/9y+ooyKfq1aunNWvW6PPPP1fXrl3vWJQNAAAAAAAAAACAvIviTwDIAjc3N1WpUkUnT5685fnDhw+rdOnSCg8Pv+lcRESESpcurd27d2drphtZ6tatm633zcsYB6BgYC4XHox19vH29tZ///tfPfLII2rdurXWrl0rY4zVsZDPPPLII4qPj9fq1asVFRVldRwAAAAAAAAAAADcA4o/ASCL2rdvrwMHDigpKemmc3cqvrh+/brOnj2rFStW3PH+O3bsUEBAgB544AHt3LlT3377rcqWLatHH31Umzdvvun6r7/+WuXKlVO9evWy/svkY4wDUDAwlwsPxjp7+Pr6av/+/dqyZYvsdrvat2+vGjVq6O2339bVq1etjod85PHHH1dMTIzef/99TZo0yeo4AAAAAAAAAAAAyCInqwMAQH7z0ksvadasWVq2bJm6deuW4Vz16tV15syZW35u6dKlatmypSpWrHjH+/v5+Wnr1q2ZynLu3Dlt3LhREydOlM1my9wvUEAwDkDBwFwuPBjr7BUQEKCAgAAdOnRI0dHRGjlypCZNmqRnn31WL730ksqVK2d1ROQDHTp00MyZM9W3b1+VKVNGzz33nNWRAAAAAAAAAAAAkEns/AkAd5CUlKT169fr0KFDun79uiSpWrVqeu211/Taa6/p8uXLmbpPamqq4uPjdenSJUVERGRbvnHjxqlBgwYaMGCApD92Tjt9+rS2bt2qw4cPZ1s7VmMcgIIrL89lZC/GOmdUr15db7/9to4dO6YhQ4Zo/vz5qlKlirp37679+/dbHQ/5wAsvvKAxY8aoT58+Wr58udVxAAAAAAAAAAAAkEkUfwLAHSQmJqpNmzaqUaOGnn322fTjI0eOVGhoqCIiInThwoW73mfTpk1atmyZ1q5dKzc3t2zJ9tZbb2nv3r1as2aNnJ2dJUkrVqxQuXLl1KxZMyUkJGRLO3kB4wAUbHl1LiP7MdY5p1SpUho+fLiOHDmi6OhoffPNN6pfv76efPJJbdy40ep4yOPGjx+vyMhIdevWLdM76AIAAAAAAAAAAMBaNmOMsToEAGRVaGioJCkuLs7SHJ9++qk+//xzTZkyJVfbXbFihf7zn/9o2LBhcnR0zNW2/8pmsykmJkZhYWGWZWAcpNjYWIWHh4uvdUj593lgLmddXvk+zCrG+t5kZbyNMVq3bp3efPNNbdy4UX5+fnrllVfUvn37fPuqe+Ss1NRUhYWFaePGjdq8ebPq1atndSQAAAAAAAAAAADcXhzFnwDypfxa7FIQ5YXiT+TfYj/kDJ6HwoPvw8LlXsd77969ev3117V06VI99NBDevnll/X000/nywJY5KykpCQ9+eSTOnr0qLZt2yZfX1+rIwEAAAAAAAAAAODW4njtOwAAAAAUYA0aNFBsbKz27NmjWrVqqVevXqpbt64WLlyotLQ0q+MhD3F1ddWqVatUokQJtW3bVomJiVZHAgAAAAAAAAAAwG1Q/AkAAAAAhUD9+vUVGxurAwcOqHHjxurRo4fq1q2ruLg4dgpGOi8vLyUkJOjKlStq166drly5YnUkAAAAAAAAAAAA3ALFnwAAAABQiNSqVUvz5s3ToUOHFBAQoC5duqhevXoUgSJduXLltGbNGh06dEgRERFKSUmxOhIAAAAAAAAAAAD+guJPAAAAACiEKleurPfff1979uxR9erVFR4eLj8/P3322WdWR0MeULt2ba1Zs0ZffPGF+vXrZ3UcAAAAAAAAAAAA/IWT1QEA4F6dPHlSsbGxVseApO3bt1sdodBjDHArrJEF38mTJyUx1oXFyZMnVb58+Wy/b926dbV8+XJ98803evXVVxUYGKjWrVtr6tSpatiwYba3h/zjkUce0ZIlSxQcHKyyZctq/PjxVkcCAAAAAAAAAADA/7EZ3usHIB8KDQ3V0qVLrY4B5Dl8rUP6oxAwPDzc6hgAckBISIji4uJytI3t27dr2LBh+uqrrxQSEqLJkyeratWqOdom8rb58+erR48emjFjhgYMGGB1HAAAAAAAAAAAAEhxFH8CAAAAADIwxmjp0qV65ZVXdOLECfXv31+vvPKKihUrZnU0WGTixIkaO3asYmJiFBISYnUcAAAAAAAAAACAwo7iTwAAAADArSUnJ2vu3LkaO3asrl27puHDh2vQoEEqUqSI1dFggYEDB2r27NlKSEjQE088YXUcAAAAAAAAAACAwoziTwAAAADAnV25ckVvvPGGpk6dqooVK2r69Olq27at1bGQy9LS0hQREaH169fryy+/VIMGDayOBAAAAAAAAAAAUFjFOVidAAAAAACQt7m7u2vcuHHav3+/6tWrp3bt2ikoKEhHjhyxOhpykYODgxYsWKBHHnlE7du317Fjx6yOBAAAAAAAAAAAUGhR/AkAAAAAyJRq1aopNjZW69ev19GjR1WnTh29+uqrSkpKsjoackmRIkUUFxenkiVLql27dvrtt9+sjgQAAAAAAAAAAFAoUfwJAAAAAMiSwMBA7d27V1OmTNGMGTNUt25drV+/3upYyCVeXl5as2aNLl++rM6dO+v69etWRwIAAAAAAAAAACh0KP4EAAAAAGSZs7OzBg4cqIMHD8rf319t2rRRUFCQfvzxR6ujIRc88MADWrt2rfbs2aMePXrIGGN1JAAAAAAAAAAAgEKF4k8AAAAAwD0rW7as5s2bp4SEBB04cEB169ZVdHS00tLSrI6GHFanTh3FxMRo6dKlmjBhgtVxAAAAAAAAAAAAChWKPwEAAAAA961du3b697//rcjISA0ePFjNmzfX999/b3Us5LAnn3xS7733nsaNG6d58+ZZHQcAAAAAAAAAAKDQoPgTAAAAAJAt3NzcNHnyZO3evVvXrl1T/fr1NXXqVKWmplodDTnoueee08svv6znn39eGzdutDoOAAAAAAAAAABAoWAzxhirQwAAAAAACpaUlBS9+eabGjt2rBo2bKiPP/5YDz74oNWxkEOMMerWrZvWrVunbdu2qWbNmlZHAgAAAAAAAAAAKMji2PkTAAAAAJDtnJycNHz4cO3atUupqal6+OGH9cYbbygtLc3qaMgBNptNc+bMUa1atdS2bVudPXvW6kgAAAAAAAAAAAAFGsWfAAAAAIAc89BDD2nbtm0aO3asRo8erccff1wnTpywOhZygN1u14oVK+Tk5KT/9//+n65evWp1JAAAAAAAAAAAgAKL4k8AAAAAQI5ycnLSiBEj9M033ygxMVF169bV/PnzrY6FHFCiRAmtXLlSR44cUY8ePdjpFQAAAAAAAAAAIIdQ/AkAAAAAyBUPPfSQdu7cqcjISPXs2VNhYWFKTEy0OhayWa1atRQfH69Vq1Zp1KhRVscBAAAAAAAAAAAokGzGGGN1CAAAAABA4fLZZ5+pV69ecnR01D//+U+1bNnS6kjIZkuWLFHXrl0VHR2tfv36WR0HAAAAAAAAAACgIIk0+W9kAAAgAElEQVRj508AAAAAQK5r3bq19u7dq4cffliPPfaYoqKidO3aNatjIRtFRETo1Vdf1YABA7R69Wqr4wAAAAAAAAAAABQo7PwJAAAAALDUvHnz1L9/f1WqVEkLFy5UvXr1rI6EbGKMUc+ePfXJJ59oy5Ytql+/vtWRAAAAAAAAAAAACgJ2/gQAAAAAWKt79+7av3+/vL299cgjj2jq1KlKS0uzOhaygc1m00cffaS//e1vat++vU6ePGl1JAAAAAAAAAAAgAKBnT8BAAAAAHlCSkqK3nzzTY0ZM0YtW7bUP/7xDz3wwANWx0I2uHDhggICAlSkSBF9+eWXKlq0qNWRAAAAAAAAAAAA8jN2/gQAAAAA5A1OTk4aPny4tm7dqmPHjql+/fqKj4+3OhaygZeXl1auXKlTp04pPDxcKSkpVkcCAAAAAAAAAADI1yj+BAAAAADkKX/729+0d+9ede3aVcHBwerevbsuX75sdSzcp8qVKys+Pl5ffPGFBg8ebHUcAAAAAAAAAACAfI3iTwAAAABAnuPm5qa3335by5cv19q1a/Xwww/rm2++sToW7pOfn5/mzZun6Ohovffee1bHAQAAAAAAAAAAyLco/gQAAAAA5FnBwcHat2+fKlasqEcffVTvvvuujDFWx8J9CAkJ0bhx4zRgwAB9/vnnVscBAAAAAAAAAADIl2yGv5oBwE1CQ0O1dOlSq2OgAOJrF/cjNjZW4eHhVscAkA+EhIQoLi7O6hjZyhijd955R0OHDlW7du308ccfq1ixYlbHwj0yxujpp5/W+vXrtXPnTlWrVs3qSAAAAAAAAAAAAPlJnJPVCQAgr/Lz89OgQYOsjoECYvv27ZoxY4bVMVBAxMTEWB0BQB42ffp0qyPkCJvNpqioKDVs2FBdu3ZVw4YNtXjxYvn7+1sdDffAZrNpzpw5atGihYKCgrRjxw55eXlZHQsAAAAAAAAAACDfoPgTAG6jfPnyCgsLszoGChCKP5FdWJsA3ElB2/Hzr5o3b669e/eqR48eatGihV555RW9+uqrcnBwsDoassjV1VXx8fH629/+poiICK1evVqOjo5WxwIAAAAAAAAAAMgX+OsYAAAAACBfKVGihFavXq1p06Zp8uTJevLJJ3XmzBmrY+EePPDAA1qxYoW+/PJLjRo1yuo4AAAAAAAAAAAA+QbFnwAAAACAfOfGa+C3bt2qI0eOqHHjxtqyZYvVsXAPGjVqpPfff19///vfNWfOHKvjAAAAAAAAAAAA5AsUfwIAAAAA8q0mTZpoz549atq0qVq1aqVx48YpLS3N6ljIomeeeUbDhg1Tv379tHnzZqvjAAAAAAAAAAAA5HkUfwIAAAAA8jUvLy/FxMTozTff1OTJk/XEE0/op59+sjoWsmjy5Mlq06aNwsLC9OOPP1odBwAAAAAAAAAAIE+j+BMAAAAAkO/deA38tm3bdOLECTVo0EDr16+3OhaywMHBQQsWLFCpUqXUoUMHXblyxepIAAAAAAAAAAAAeRbFnwCQjZYtW6YqVarIZrPd9qdSpUq5mmnHjh168MEH5eDgIJvNptKlS2vixIm5muFu/tpvZcqUUbdu3ayOBSAPmDZtmkqVKiWbzab33nsv/fiaNWvk5eWlVatW5Wj7udVOVqSlpWn69Ony9/e/53v8dd195plnbromMDBQHh4ecnR0VJ06dbR79+77iZ3jeFZwQ6NGjbR792499thjatu2raKiopScnGx1LGSSh4eHVq5cqVOnTql79+4yxlgdCQAAAAAAAAAAIE+i+BMAstFTTz2lo0ePqmrVqvLy8pIxRsYYpaSk6OrVqzpz5ozc3NxyNZOfn5/++9//KjAwUJJ08OBBjR49Olcz3M1f++3nn3/WggULrI4FIA94+eWXtW3btpuO51YxUF4rOjp06JCaN2+uwYMH6+rVq/d8nz+vu8WLF9eCBQuUkJCQ4ZpPP/1UcXFxCgoK0oEDB/Twww/fb/wcxbOCP/P09NTixYsVHR2tDz74QIGBgbwGPh+pVKmSli9frtWrV+u1116zOg4AAAAAAAAAAECeRPEnAOQCR0dHubq6qlSpUqpRo4bVcSyXlJR0XzvWAUD79u114cIFBQUFZds9b7U25UQ79+rbb7/ViBEjFBkZqQYNGmTbfd955x05ODioT58+unDhQrbdN68ojM8K/qdfv37atm2bTp06pUaNGmnLli1WR0ImBQQE6L333tP48eO1ZMkSq+MAAAAAAAAAAADkORR/AkAui4+PtzqC5ebMmaOzZ89aHQMAMsjra1P9+vW1bNkyPf3003Jxccm2+/r7+2vgwIE6deqUXn755Wy7b0GW158VZNSwYUN988038vf312OPPaapU6daHQmZ1KtXL/Xv31/PPvusvv76a6vjAAAAAAAAAAAA5CkUfwKAhVJTU/Xqq6/K19dXrq6uqlevnmJiYjJ9ft26dfL09NSkSZOy3PasWbPk7u4uNzc3rVixQm3btpWnp6fKly+vxYsXp1/3zjvvyG63q1SpUurbt6/Kli0ru90uf39/7dy5M/26AQMGqEiRIipTpkz6sf79+8vd3V02m02//vqrJGngwIEaMmSIjhw5IpvNpmrVqmU5uyRt2bJFtWvXlpeXl+x2u+rWrav169dLkp5//nnZbDbZbDZVrVpVe/bskfRHAYGbm5u8vLy0cuVKSXfu47///e9yc3OTh4eHzp49qyFDhqhcuXI6ePDgPWUGcltm57n0xyur33rrLT344INycXGRj4+POnXqpO+++y79mtvNicjISLm7u8vBwUGNGjVS6dKl5ezsLHd3dz388MNq1qyZKlSoILvdLm9vbw0bNixD23eaz7eydetW+fr6ymazKTo6WpJ0+PDh9Hn/15/PPvvsru3cam26VTuZ7aus9H12u5fvhokTJ6pGjRr66KOPtGHDhjtey7NScJ6VwsTDw0NxcXGaOHGiXnnlFXXp0kVXrlyxOhYyYcaMGWrZsqU6deqkU6dOWR0HAAAAAAAAAAAgz6D4EwByyeeff65p06ZlODZixAj9/e9/1/Tp0/XTTz8pKChIXbt21a5duzJ1PjU1VZKUlpaW5Tz9+vXToEGDlJSUJA8PD8XExOjIkSOqUqWKevfureTkZEl/FHX27NlTV69eVVRUlI4dO6bdu3crJSVFrVu31o8//ijpjyLRsLCwDG3MnDlT48ePz3BsxowZCgoKUtWqVWWM0eHDh7OcXZLOnDmj8PBwHTt2TKdPn1bRokX19NNPS5I++ugjPfXUU3J0dNSWLVvUsGFDSdLcuXMVHBysBQsWqEOHDpLu3MfDhg3T4MGDdfnyZb3++uuqXLmy/Pz8ZIy5p8xAbsvsPJekcePGaeTIkXrllVd09uxZbd68WT/++KOaNWumM2fOSNJt50RUVJSGDh0qY4xmz56tH374QT///LOaN2+uPXv2aOTIkdqzZ48SExPVo0cPvfHGG/r222/T277TfL6VgIAAbdu27abjI0aM0JUrV2SM0U8//SQfHx/5+/vr8ccfv2s7t1qbbtdOZvoqK32f3e7lu8HV1VX/+Mc/5ODgoN69e9+xKI5npeA8K4WNzWbT8OHDtWHDBn3xxRdq3Lix/vOf/1gdC3fh6OiohQsXyt3dXaGhobp27ZrVkQAAAAAAAAAAAPIEij8BIIdcuHAhw25iNwpKbvj99981a9YsBQcH66mnnpK3t7dGjx4tZ2dnzZ07967nJal9+/a6ePGixowZc19Z/f395enpqZIlSyoiIkJXrlzRiRMnMlzj5OSUvnNZ7dq1NWvWLF26dCk9S24LCQnR2LFj5ePjo2LFiqlDhw46d+6cfvnlF0lSZGSkUlNTM+S7ePGivv76a7Vr107S3cfgz6ZMmaIXX3xRy5YtU61atXLvFwWyyZ3meVJSkt566y117txZ3bp1k5eXl+rWrav33ntPv/76qz744IOb7ne7OVG7dm25ubmpePHi6tKliyTJ19dXJUqUkJubm7p16yZJGXY+vNt8zoxq1app8uTJcnNzk/RHQV1SUpI+/vhjOTg4ZFs799JXmVljs9O9fjc0bdpUgwYN0rFjxzRixIhbXsOzUrCelcKqZcuW2rVrl7y9veXn56elS5daHQl34ePjo1WrVum///2vevfubXUcAAAAAAAAAACAPIHiTwDIIV5eXjLGpP988cUXGc4fPHhQV69e1UMPPZR+zNXVVWXKlNF333131/M5pUiRIpJ0153GGjduLDc3txzNkhXOzs6S/rfj3WOPPaYaNWro448/Tt+pc8mSJYqIiJCjo6Oku48BUFD9dZ4fOHBAly9fVuPGjTNc16RJExUpUkQ7d+68r3ZSUlLSj92Yq3daY/46n7MqNjZWn3zyicaPH6+aNWtmazv321eZXWOtMnHiRNWsWVMzZ87U1q1bbzrPs8KzUlCUL19emzZtUq9evRQWFqaoqKgMzx/ynpo1a2rx4sVatGjRTbvpAwAAAAAAAAAAFEYUfwJALmnZsqVefvnl9P++8Urd0aNHZ9gh9Pjx47p69epdz+cFLi4uWdoFLTslJCSoZcuWKlmypFxcXDRs2LAM5202m/r27aujR49q48aNkqR58+bpueeeS78mP/QxkBvOnz8vSSpatOhN57y9vXXp0qUcbf9u8zkrzp07p5deeklNmjTRkCFDsr0dq/sqp9ntds2dO1c2m03PPvuskpKSMpy3+vfnWUF2cnFx0dtvv61//vOf+uijj/TEE0/ozJkzVsfCHbRp00ZTp07ViBEjtGHDBqvjAAAAAAAAAAAAWIriTwCwSMmSJSVJ06dPz7BDqDFG27dvv+t5qyUnJ+v8+fMqX758rrS3efNmTZ8+XZJ04sQJBQcHq0yZMtq5c6cuXLigqVOn3vSZnj17ym6366OPPtLBgwfl6empihUrpp/P630M5BZvb29JumUxWk7P88zO58yKiorS+fPnNXfu3PRdfrOzHSv7Krc0bdpUgwcP1qFDhzRhwoQM53hWMq8wPCsFxTPPPKOtW7fqxIkTaty4sXbs2GF1JNzBkCFD1K1bN4WHh+vo0aNWxwEAAAAAAAAAALAMxZ8AYJEKFSrIbrdr796993Teaps2bZIxRn5+funHnJyccuz1tN98843c3d0lSfv371dycrL69eunKlWqyG63y2az3fQZHx8fhYeHKz4+XtOmTVPv3r0znM/rfQzkloceekhFixbVrl27MhzfuXOnrl+/rkaNGuVY25mdz5mRkJCghQsXasyYMapTp0768aFDh2ZbO1b2VW6aMGGCatWqpT179mQ4zrOSeYXlWSkoGjZsqK+//lp16tRRy5Yt9fbbb1sdCXcwe/ZsVapUSZ07d2a3dgAAAAAAAAAAUGhR/AkAFrHb7erVq5cWL16sWbNm6eLFi0pNTdXJkyf1008/3fW8JK1du1aenp6aNGlSjudNS0vTb7/9ppSUFO3bt08DBw6Ur6+vevbsmX5NtWrVlJiYqPj4eCUnJ+uXX37R8ePHb7pXsWLFdPr0aR07dkyXLl26Y8FocnKyzpw5o02bNqUXf/r6+kqSNmzYoN9//12HDh3Szp07b/n5yMhIXbt2TatXr1ZQUFCGc5npY6AwsNvtGjJkiJYvX64FCxbo4sWL2r9/vyIjI1W2bFn16dMnx9rOyny+k4sXL6pv375q0KCBRowYIUn6/ffftWvXLu3duzdT7WRmbbKyrzIrO74bbrz+/c87Yt44zrNScJ4VZFS8eHGtXbtW48eP1+DBg9W9e3cKC/MoV1dXLVu2TKdOndILL7xgdRwAAAAAAAAAAABrGADATUJCQkxISEiWP/fVV1+ZGjVqGElGkilTpox5/PHHb3v9tWvXzPDhw42vr69xcnIyJUuWNE899ZQ5cOBAps6vWbPGeHh4mIkTJ962jR07dpg6deoYBweH9EyTJk0yM2fONG5ubkaSqV69ujly5Ij54IMPjKenp5FkKlasaL7//ntjjDF9+vQxzs7Oply5csbJycl4enqaTp06mSNHjmRo69y5c6ZVq1bGbrebypUrm5deeskMHTrUSDLVqlUzJ06cMMYYs3v3blOxYkXj6upqAgICzOzZs03VqlXT++12P8uXL09va/jw4aZYsWLG29vbhIaGmujoaCPJVK1aNb2dGxo2bGhGjhyZ5TGYOnWqcXV1NZJMhQoVzPz582/bz3cTExNj+NrF/crqc5SVeZ6WlmbeeOMNU716dePs7Gx8fHxMcHCwOXjwYPr9bjcnZsyYkd5OpUqVzJYtW8yUKVOMl5eXkWRKly5tFi5caJYsWWJKly5tJBkfHx+zePFiY8yd5/PAgQPTP+Pu7m46d+5s3n33XVOmTBkjybi5uZkOHTqYadOm3XbtaNeu3V3bOXHixE1r0+jRo29qJ7N9lZW+z6zt27ebRx991JQtWzbD94y/v7/58ssv06/LzHfD8uXL09fdEiVKmBdffPGW1w0dOtR07NgxwzGelbz/rNzrv2PwP6tXrzY+Pj6mYcOG5ujRo1bHwW18+umnxtHR0bzzzjtWRwEAAAAAAAAAAMhtsTZjjMm2SlIAKCBCQ0MlSXFxcRYnyRv69u2ruLg4nTt3zuoo96R9+/aKjo5W5cqVLcsQGxur8PBw8bWL+8FzBCAz+HdM9jh8+LCeeuopnTp1SosXL1br1q2tjoRbmDRpksaNG6cNGzaoRYsWVscBAAAAAAAAAADILXG89h0AkCmpqalWR8i0P79+d9++fbLb7ZYWfgIAgPynWrVq2r59uwIDA9WuXTu9/fbbVkfCLYwaNUqdOnVSeHi4Tp48aXUcAAAAAAAAAACAXEPxJwCgwBk+fLgOHTqk77//Xr169dKECROsjgQAN/nuu+9ks9nu+hMREWF1VKDQcnNz06JFizRt2jQNHjxY3bp1U1JSktWx8Cc2m01z585V8eLFFRISomvXrlkdCQAAAAAAAAAAIFdQ/AkAuKNRo0Zp7ty5unDhgipXrqylS5daHemu3NzcVKtWLT3xxBMaN26cateubXUkALhJrVq1ZIy568+SJUusjgoUelFRUVq9erVWr16txx9/XD///LPVkfAnRYsW1SeffKLvvvtOL7zwgtVxAAAAAAAAAAAAcgXFnwCAO3r99dd17do1GWP0ww8/KCQkxOpIdzVx4kSlpqbqxIkTCgoKsjoOAAAoANq2bat//etf+u2339S4cWN9/fXXVkfCn9SoUUPz5s3TggUL9OGHH1odBwAAAAAAAAAAIMdR/AkAAAAAQCbUqFFDX331lR588EE1b95c8+fPtzoS/qRDhw4aNWqU+vfvr61bt1odBwAAAAAAAAAAIEdR/AkAAAAAQCYVK1ZM69atU1RUlHr06KERI0YoLS3N6lj4P+PHj1dgYKDCwsJ0+vRpq+MAAAAAAAAAAADkGIo/AQAAAADIAkdHR02ZMkXz/z979xkdVbm2cfwaEkiDFDpSRLpIEQGlSxHpnZAIkRcEpeghHECKokYEFFtAkA4qchQIcChKpCM1KIg0AQERQZAaQkkk7Xk/uMgx0ibJJHsy+f/W4oMzu1z7yVP2WnO79+efa9KkSWrXrp1iYmKsjgVJuXLl0ueffy4fHx8FBgYqPj7e6kgAAAAAAAAAAACZguJPAAAAAADSoUePHlq/fr1++OEHPfHEEzpy5IjVkSApICBAK1as0P79+zVs2DCr4wAAAAAAAAAAAGQKd6sDAICzOn36tBYtWmR1DLiIHTt2WB0BLoS5CcC9nD59WiVKlLA6Ro5Rr1497dq1Sx07dlS9evW0aNEiNWvWzOpYOd7DDz+sTz/9VF27dlWNGjXUu3dvqyMBAAAAAAAAAAA4FMWfAHAXUVFRCgoKsjoGANyGuQnA/XTt2tXqCDlK8eLFtWXLFj3//PNq2bKlxo4dqxEjRlgdK8fr3Lmzhg4dqoEDB6pq1aqqVauW1ZEAAAAAAAAAAAAchuJPALiLrl27KiIiwuoYTmPRokUKCgqSMcbqKNnSrfYDHIFxmDMxD8NegYGBVkfIkTw9PTVv3jxVqVJFr7zyio4fP64pU6YoT548VkfL0d555x3t379fXbp00a5du1SoUCGrIwEAAAAAAAAAADhELqsDAAAAAADgCmw2m0aMGKElS5boyy+/VPPmzXXx4kWrY+Vobm5umj9/vmw2m7p3766kpCSrIwEAAAAAAAAAADgExZ8AAAAAADhQx44dtX37dv3222+qU6eOjhw5YnWkHK1gwYJasmSJtm7dqrCwMKvjAAAAAAAAAAAAOATFnwAAAAAAOFjVqlW1a9cuPfDAA6pbt642btxodaQcrWbNmpo4caLGjx+vyMhIq+MAAAAAAAAAAABkGMWfAAAAAABkggIFCmjt2rVq1aqVnn76ac2YMcPqSDlav3799OyzzyokJES//vqr1XEAAAAAAAAAAAAyhOJPAAAAAAAyiYeHh+bPn69XX31V/fv3V2hoqJKTk62OlWN9/PHHKlasmIKCghQfH291HAAAAAAAAAAAgHSj+BMAAAAAgExks9kUFhamuXPnatq0aQoKClJcXJzVsXIkHx8fLV26VIcPH9bw4cOtjgMAAAAAAAAAAJBuFH8CgAOtWrVKfn5+WrlypdVRAMByzIkAkFrv3r0VGRmpdevWqWnTpjp//rzVkXKkChUqaObMmZo0aZL+85//WB0HAAAAAAAAAAAgXSj+BAAHMsZYHQEAnAZzIgDcrlmzZvruu+906dIl1a1bV4cOHbI6Uo4UFBSkgQMHqn///vwNAAAAAAAAAABAtkTxJwA4UJs2bRQTE6N27dpZHUVxcXGqV6+e1TEcLiuuy1XbDs6lTZs2Cg8P15kzZ6yOkmmYE+FIzP9wJeXLl9eOHTtUvHhx1a9fXxs3brQ6Uo40ceJEVa1aVd26dVNsbKzVcQAAAAAAAAAAANKE4k8AcFFz5sxxyVeJZsV1uWrbwbns2LFDQ4YMUYkSJdSwYUPNnj1b0dHRVsdyWYzr7I/5H66mQIECWrt2rVq1aqWWLVvqs88+szpSjpM7d24tWLBAZ8+e1QsvvGB1HAAAAAAAAAAAgDSh+BMAHGTr1q0qVaqUbDabpkyZIkmaOnWqfHx85O3treXLl6tVq1by9fVViRIl9OWXX6bs+9FHH8nT01OFCxdW//79VaxYMXl6eqpevXrauXNnynaDBg1Snjx5VLRo0ZTPXnzxRfn4+Mhms+nixYuSpMGDB2vo0KE6fvy4bDabypUrJ0n65ptv5Ovrq3HjxmVFk0j667XPH374oR5++GF5eHgoICBAHTt21OHDhx1yXa7cdsgZjDHasWOH+vfvr4IFC6pp06aaN2+erl+/bnW0DGFOBPM/cH8eHh6aP3++Ro0apV69eik0NFTJyclWx8pRSpUqpc8++0xffPGF5s6da3UcAAAAAAAAAAAAu1H8CQAO0qBBA23fvj3VZwMHDtS///1vxcXFKV++fFq4cKGOHz+uMmXK6Pnnn1dCQoKkvwpTevXqpdjYWIWGhurXX3/VDz/8oMTERDVv3lynTp2S9FdBVLdu3VKd4+OPP9abb76Z6rOJEyeqXbt2Klu2rIwxOnbsmCQpKSlJkrK0qCAsLEyjRo3Sq6++qvPnz2vz5s06deqUGjZsqHPnzknK2HW5ctsh50hKSlJSUpKSk5O1efNm9e7dWwUKFFDbtm0VERGh+Ph4qyOmGXMimP8B+9hsNoWFhWnu3LmaPn26goKCFBcXZ3WsHKVNmzYaPny4XnzxRe3Zs8fqOAAAAAAAAAAAAHah+BMAski9evXk6+urQoUKKTg4WDdu3NBvv/2Waht3d/eUJ6RVrlxZU6dO1bVr1/TJJ584JEObNm109epVvfbaaw453v3ExcXpww8/VOfOnRUSEiI/Pz9VrVpV06dP18WLFzVz5kyHncvV2g45160i0Pj4eK1Zs0bdunVTgQIF1LNnT+3evdvqeA6TE+fEnIT5H0i73r17KzIyUuvWrVPTpk11/vx5qyPlKOPGjVODBg3UrVs3xcTEWB0HAAAAAAAAAADgvij+BAAL5MmTR5JSnnJ3N7Vq1ZK3t3eqV+RmJwcPHtT169dVq1atVJ/Xrl1befLkSfVaXkdz1raz2Wz8459sNptdr3W/NUdcv35dn3/+ud59911Jfz210JXklDkxJ2H+B9KnadOm2r59u86dO6f69evr+PHjVkfKMdzc3DR//nzduHFDPXv2lDHG6kgAAAAAAAAAAAD35G51AADAvXl4eOjChQtWx0iXK1euSJLy5s1723f+/v66du1app7fGdtu0aJFVkeAk+jTp899ix2lv55qmJiYqICAAD3++ONavXq1Bg4cmAUJnZMzjmvcjvkfSL+HH35YUVFRatu2rerVq6evv/76tkJqZI4iRYroiy++UPPmzTVp0iQNHjzY6kgAAAAAAAAAAAB3RfEnADixhIQEXblyRSVKlLA6Srr4+/tL0h2LfDL7upy17QIDA62OACfRr1+/u37n7u6upKQk5cmTR23bttX//d//qWXLlvrvf/+r1atXy2azZWFS5+Gs4xq3Y/4HMqZw4cLauHGjgoKC1LhxYy1cuFBt2rSxOlaO0LhxY7355psaPny4ateurfr161sdCQAAAAAAAAAA4I547TsAOLFNmzbJGKM6deqkfObu7m7X0wKdQZUqVZQ3b17t2rUr1ec7d+5UfHy8atasmfKZo68ru7cdch43Nze5ubnJ3d1dzZs316effqpLly5p8eLFateunXLnzm11RMsxrrMP5n8g43x8fLR8+XL16NFDHTp00KxZs6yOlGOMGjVKrVu3VnBwME8RBgAAAAAAAAAAToviTwBwIsnJyYqOjlZiYqL27dunwYMHq1SpUurVq1fKNuXKldPly5e1bNkyJSQk6MKFCzp58uRtx8qfP7/OnDmjXyQHYCoAACAASURBVH/9VdeuXVNCQoIiIyPl6+urcePGZcn1eHp6aujQoVq6dKnmz5+vq1evav/+/RowYICKFSuW6smHGbkuyfXaDjmDzWaTm5ubcuXKpSeffFKzZ8/WxYsXtWrVKvXs2VM+Pj5WR7QU4zr7Yv4HHMPNzU3Tp0/X6NGj1a9fP4WFhVkdKUew2Wz65JNPlDt3bj3zzDNKSkqyOhIAAAAAAAAAAMBtKP4EAAeZMmWKateuLUkaMWKEOnTooKlTpyo8PFySVK1aNf3yyy+aNWuWhg4dKklq2bKljh49mnKMP//8U1WrVpWXl5caNmyoChUqaOPGjfLw8EjZZuDAgWrSpImeeeYZVaxYUW+99Za8vLwkSXXr1tWpU6ckSQMGDFDhwoVVuXJltW7dWpcvX86SdvinN954Q+PHj9eYMWNUsGBBPfnkkypdurQ2bdqUqrAto9flim0H1+bu7q5atWopPDxcZ86c0fr169WrVy/5+flZHc0hmBPB/A84hs1mU1hYmGbPnq1x48apT58+SkxMtDqWywsICNCCBQu0ZcsWir8BAAAAAAAAAIBTshljjNUhAMDZBAYGSpIiIiKy7Jz9+/dXRESELl26lGXnTItFixYpKChIzrhsOHvbSc7dfrDGmTNn9MADD6Rpn5zUj7LDuM5qOenvby/6yZ1ZcR+DrLFixQo988wzat68ub744gt5e3tbHcnlTZkyRYMHD9a6devUuHFjq+MAAAAAAAAAAADcEsGTPwHAifBKyfSj7ZDdpLXwMydiXMMe9BPkJO3bt9eGDRu0fft2NW3aVBcvXrQ6kst76aWX1L59e4WEhNDeAAAAAAAAAADAqVD8CQAAAABANvHEE09o+/btunTpkho1aqSTJ09aHcnlzZ07V7lz51bPnj15+jIAAAAAAAAAAHAaFH8CgBN45ZVX9MknnygmJkYPPfSQFi9ebHWkbIO2A1wP4xr2oJ8gJytXrpy2bNkiT09P1a1bV3v27LE6kkvz9/fXwoULtW7dOk2cONHqOAAAAAAAAAAAAJIo/gQApzB+/HjdvHlTxhidOHFCXbt2tTpStkHbAa6HcQ170E+Q0xUtWlSbN29WtWrV1KhRI61evdrqSC7t8ccfV1hYmEaMGKGoqCir4wAAAAAAAAAAAFD8CQAAAABAdpQ3b16tWLFC7du3V/v27fXFF19YHcmljRw5Uo0bN1ZISIiuXr1qdRwAAAAAAAAAAJDDUfwJAAAAAEA2lSdPHs2fP1+jRo1SSEiIwsLCrI7ksnLlyqX58+frxo0bev75562OAwAAAAAAAAAAcjh3qwMAAAAAAID0s9lsCgsLk6+vr15++WXFxsZqwoQJstlsVkdzOYULF9YXX3yhp556SnPnztVzzz1ndSQAAAAAAAAAAJBDUfwJAAAAAIALGDJkiIoUKaLevXvr8uXLmjFjhtzc3KyO5XKaNGmil19+WYMGDVKdOnVUuXJlqyMBAAAAAAAAAIAciOJPALiLqKgoBQYGWh3DaZw+fVqSaJN0utV+gCMwDnMm5mHYKyoqSnXq1LE6BizSo0cP+fv7KzAwUBcvXtSCBQvk6elpdSyXM3bsWG3ZskXdunXT999/Ly8vL6sjAQAAAAAAAACAHCaX1QEAANlDiRIl1LVr19s+X7x4MYWNAJAFmIcB2KtNmzZavXq1Nm3apNatW+vatWtWR3I57u7uWrBggc6ePauhQ4daHQcAAAAAAAAAAORAPPkTAO6iTp06ioiIsDqG07PZbPr3v/+tbt26WR3FqS1atEhBQUFWx4CLYG7C3zEP4594OiwkqWHDhtq6datatGihZs2aadWqVSpYsKDVsVxKyZIlNXPmTHXt2lWNGjVScHCw1ZEAAAAAAAAAAEAOwpM/AQAAAABwQVWqVNGWLVt0+fJlNWrUiKcEZ4IuXbqof//+GjBggE6cOGF1HAAAAAAAAAAAkINQ/AkAAAAAgIsqU6aMtmzZInd3dzVs2FBHjx61OpLLCQ8P14MPPqjg4GDFx8dbHQcAAAAAAAAAAOQQFH8CAAAAAODCihUrpm+//VbFihVTw4YN9eOPP1odyaV4enpq0aJFOnTokN544w2r4wAAAAAAAAAAgByC4k8AAAAAAFxcQECA1q5dq2rVqqlJkybaunWr1ZFcSoUKFRQeHq53331Xa9assToOAAAAAAAAAADIASj+BAAAAAAgB/Dx8dHKlSv11FNPqUWLFoqMjLQ6kkvp06ePnnnmGT377LM6e/as1XEAAAAAAAAAAICLo/gTABykf//+stlsKf9CQkJu22bdunUaNWqUkpOT1alTJ5UqVUqenp4qXry4OnTooH379qX7/MnJyQoPD1e9evVu+27FihWaMGGCkpKSUn2+bNmyVJkLFiyY7vPbi3YCIDnfOIdzoF8Amc/Dw0MLFizQM888o44dO2rhwoVWR3Ip06dPV0BAgHr06MGcAgAAAAAAAAAAMhXFnwDgQPnz51dkZKSOHDmiOXPmpPrujTfe0EcffaRXXnlFycnJ2rJli7744gtdvnxZW7duVVxcnBo1aqQzZ86k+bxHjx5Vo0aNNGTIEMXGxt72ffv27eXp6almzZrpypUrKZ936NBBp0+f1ubNm9W6deu0X3A60U5AzuaM4xzWo18AWcfNzU2zZs3SoEGD9Mwzz2jSpElWR3IZefPm1fz587Vt2za99957VscBAAAAAAAAAAAujOJPAHAgLy8vtWzZUhUqVJCHh0fK5++8844WLFigRYsWKV++fJKkunXrqkGDBvL29tZDDz2kcePGKSYmRp9++mmazrl3716NHDlSAwYM0KOPPnrX7UJDQ1W9enW1bt1aiYmJkiSbzabixYurYcOGKl++fNovOJ1oJyDnctZxDmvRL4CsZ7PZ9N577+ntt9/W4MGDNXLkSKsjuYxatWpp/Pjxev3117V7926r4wAAAAAAAAAAABdF8ScAZLJjx47ptdde05tvvilPT09Jkru7u1auXJlquzJlykiSjh8/nqbjV69eXUuWLFGPHj1SFVLeSVhYmH788UdNnDgxTefICrQT4PoY57gT+gVgrREjRmjq1Kl67733NHz4cBljrI7kEv7973+rUaNGCg4O1vXr162OAwAAAAAAAAAAXBDFnwCQyT766CMZY9S+fft7bhcXFydJ8vX1zbQsAQEBevLJJzVx4kSn+2GfdgJcH+Mcd0K/AKw3YMAAff755woPD9e//vUv+r8D5MqVS5999pmio6M1bNgwq+MAAAAAAAAAAAAXRPEnAGSyr7/+WhUrVpS3t/c9t/vuu+8kSQ0aNMjUPDVq1NDvv/+uvXv3Zup50op2Alwf4xx3Qr8AnEP37t313//+V3PmzNGzzz6rxMREqyNle8WLF9esWbM0Y8YMRUREWB0HAAAAAAAAAAC4GIo/ASAT3bhxQydOnFDZsmXvus25c+e0YMEChYaGqm7duvd98llGlS9fXpK0f//+TD1PWtBOgOtjnONO6BeAc2nbtq2WLl2qpUuXKiQkRAkJCVZHyvY6deqk5557TgMHDtSZM2esjgMAAAAAAAAAAFwIxZ8AkInOnz8vY8w9n2ZWt25dhYaGqmPHjoqMjFTu3LkzNdOtLOfOncvU86QF7QS4PsY57oR+ATifVq1aKTIyUqtWrVLnzp31559/Wh0p2/voo4+UP39+9erVS8YYq+MAAAAAAAAAAAAXQfEnAGSiWz+We3h43HWbwoULa8OGDZo8ebL8/PwyPZOXl1eqbM6AdgJcH+Mcd0K/AJzTk08+qcjISG3evFmdO3dWXFyc1ZGyNR8fH33xxRfatGmTJk2aZHUcAAAAAAAAAADgIij+BIBMdKuAJCkp6a7bFCpUSP7+/lkVSfHx8ZL+l80Z0E6A62Oc407oF4Dzql+/vjZs2KDvvvtOrVq10rVr16yOlK3VrFlTr7/+ukaOHKm9e/daHQcAAAAAAAAAALgAij8BIBMVLlxYNptNMTExd91m5cqVKl68eJZlupWlSJEiWXbO+6GdANfHOMed0C8A51azZk1t3rxZP//8s1q3bq2rV69aHSlbe+WVV1S3bl11796dp6kCAAAAAAAAAIAMo/gTADKRt7e3ypQpo9OnT9/x+2PHjqlIkSIKCgq67bvg4GAVKVJEP/zwg0Mz3cpStWpVhx43I2gnwPUxznEn9AvA+VWuXFkbNmzQiRMn1LRpU126dMnqSNlWrly5NG/ePJ09e1YjR460Og4AAAAAAAAAAMjmKP4EgEzWpk0bHTx48I5P9zHG3HW/+Ph4nT9/XsuXL7/n8aOiotSgQQM98MAD2rlzp/bu3atixYqpfv362rx5823bf//99ypevLiqVauW9ovJRLQT4PoY57gT+gXg/CpVqqStW7cqOjpajRo10tmzZ62OlG2VLFlSM2bM0OTJk/X1119bHQcAAAAAAAAAAGRj7lYHAABX969//UtTp07VkiVLFBISkuq78uXL69y5c3fcb/HixWrcuLEefPDBex6/Tp062rp1q11ZLl26pPXr12vs2LGy2Wz2XUAWoZ0A18c4x53QL4DsoXTp0tq4caOaNWumpk2bat26dSpevLjVsbKlwMBALVu2TM8995z27dunIkWKWB0JAAAAAAAAAABkQzz5EwAcKC4uTqtXr9bRo0cVHx8vSSpXrpzGjBmjMWPG6Pr163YdJykpScuWLdO1a9cUHBzssHxhYWF69NFHNWjQIEl/PVHtzJkz2rp1q44dO+aw89wP7QTkTM48zmEd+gWQfZQqVUpbtmyRu7u7GjZsqBMnTlgdKduaOnWqvL291bt373s+5RgAAAAAAAAAAOBuKP4EAAe6fPmyWrZsqQoVKui5555L+XzUqFEKDAxUcHCwYmJi7nucTZs2acmSJYqMjJS3t7dDsn344Yf68ccftWrVKuXOnVuStHz5chUvXlwNGzbM0tdO0k5AzuWs4xzWol8A2UfRokW1fv16+fr6qnHjxvyPMenk5+en+fPna82aNZo+fbrVcQAAAAAAAAAAQDZkMzxiAgBuExgYKEmKiIhw6HHXrFmjDRs26J133nHoce9n+fLl+umnnzR8+HC5ubk59Ng2m00LFy5Ut27dHHZMV2ynRYsWKSgoiCc7IUNcqR+54ji3SmbMw1ahXzhGZt3HAH93+fJltWjRQmfPntW6detUqVIlqyNlS6NHj9YHH3yg77//XlWqVLE6DgAAAAAAAAAAyD4iKP4EgDugaMJ+rlR0lJlcqWgP1qEf4U6Yh/FPgYGB2r9/v8qXL6/Q0FA99dRTVkeCi4qJiVHr1q31yy+/aMOGDXr44YetjpTtJCYmqmHDhrp586aioqKUJ08eqyMBAAAAAAAAAIDsIYLXvgMAAACAiylQoIDOnTun5s2bq27duoqIiFBSUpLVseBi/Pz8tGbNGlWqVEmNGzfWgQMHrI6U7bi7u2v+/Pk6duyYXnvtNavjAAAAAAAAAACAbITiTwAAAABwMQ888IC+++477dq1S+XLl1f37t1Vrlw5TZgwQVeuXLE6HlyIj4+PvvrqK1WuXFnNmjWjADQdypYtq4kTJ+r999/Xhg0brI4DAAAAAAAAAACyCYo/AQAAAMBF1axZU/PmzdORI0cUFBSkt99+W6VKlVJoaKhOnjxpdTy4iFsFoI888ggFoOn03HPPqWPHjurVqxcF2gAAAAAAAAAAwC4UfwIAAACAiytTpozeeecdnThxQq+++qqWLFmicuXKqXv37tq/f7/V8eAC/lkASr9KuxkzZighIUGhoaFWRwEAAAAAAAAAANkAxZ8AAAAAkEMEBARoxIgROnHihD755BMdOHBA1atXV4cOHbRz506r4yGb8/b2pgA0AwoWLKhZs2Zp3rx5Wrx4sdVxAAAAAAAAAACAk7MZY4zVIQDA2QQGBvKDKzIFyy4yYtGiRQoKCrI6BoBsoGvXroqIiLBr23Xr1um1115TVFSU6tevrxEjRqhdu3aZnBCuLDY2Vm3bttWBAwe0fv16Va1a1epI2Urfvn21fPly7d+/X0WLFrU6DgAAAAAAAAAAcE4RFH8CwB3s2LFDp06dsjoGXFC3bt2sjoBs7PTp09q+fbvVMQBkAyVLllTdunXTtM/WrVs1YcIEffXVV6pRo4ZGjRqlrl27ymazZVJKuLLY2Fi1a9dO+/fvpwA0jW7cuKFHH31UlStX1vLly62OAwAAAAAAAAAAnBPFnwAAAACA/9mxY4fGjx+vr7/+WtWqVdOoUaMUGBioXLlyWR0N2QwFoOm3bds2Pfnkk5o9e7Z69epldRwAAAAAAAAAAOB8Ivj1DgAAAACQom7dulq5cqX27t2ratWqKSQkRFWqVNG8efOUnJxsdTxkI97e3lq5cqWqVq2qZs2aad++fVZHyjbq16+v0NBQhYaG6uTJk1bHAQAAAAAAAAAATognfwIAAAAA7urw4cMKCwtTRESEHn30UY0ZM0Zt2rSxOhaykdjYWLVv314//PCD1q5dq5o1a1odKVu4efOmateuLX9/f23atImn7wIAAAAAAAAAgL/jyZ8AAAAAgLurVKmSFixYoH379qls2bJq165dytNBAXt4e3trxYoVeuyxx9S8eXPt3r3b6kjZgoeHhz777DNFRUVp8uTJVscBAAAAAAAAAABOhuJPAAAAAMB9PfLII1q0aJF+/PFHlSxZUu3bt1eDBg20adMmq6MhG7hVAFqzZk01b95cu3btsjpStlCjRg29+uqrGjlypA4ePGh1HAAAAAAAAAAA4ER47TsAAAAAIM22bNmi0aNHa/PmzWrdurXGjh2rGjVqWB0LTu7WK+D37t2r9evXq1q1alZHcnqJiYlq0KCBEhISFBUVpdy5c1sdCQAAAAAAAAAAWI/XvgMAAAAA0q5hw4b69ttvtWbNGl26dEm1atVSr1699Pvvv1sdDU7s1hNAq1Wrpqeeeko//fST1ZGcnru7uz799FMdOnRI77zzjtVxAAAAAAAAAACAk6D4EwAAAACQbs2bN1dUVJSWLVumrVu3qkKFCho5cqSuXr1qdTQ4KW9vb61cuVKPPPKImjRpokOHDlkdyelVqlRJ48eP15gxY/T9999bHQcAAAAAAAAAADgBXvsOAAAAAHCIhIQETZ06VWFhYXJ3d9fo0aP10ksvyc3NzepocEI3btxQq1atdOLECW3atElly5a1OpJTS05OVvPmzXX27Fnt3r1bXl5eVkcCAAAAAAAAAADW4bXvAAAAAADHyJ07t0JDQ3X8+HH16dNHw4cPV9WqVfX1119bHQ1OyMfHRytXrlSxYsXUpEkTnThxwupITi1Xrlz67LPP9Mcff+i1116zOg4AAAAAAAAAALAYxZ8AAAAAAIfKnz+/3nnnHe3bt0/ly5dX27Zt1aZNG17vjdv4+flpzZo1KlSokJo3b67ff//d6khOrUSJEvrggw8UHh6uTZs2WR0HAAAAAAAAAABYiOJPAAAAAECmqFixopYvX64NGzbo7Nmzql69uoYNG6Zr165ZHQ1OxN/fX9988408PT3VpEkTnT171upITq13797q1KmTevfuzVgCAAAAAAAAACAHo/gTAAAAAJCpmjRpol27dmn27NmaN2+eKlasqHnz5skYY3U0OIlChQppw4YNcnd3V5MmTXTu3DmrIzm1adOmKS4uTkOHDrU6CgAAAAAAAAAAsAjFnwAAAACATJcrVy717NlTR44cUWBgoJ577jk9+eST2rdvn9XR4CQKFy6stWvXKjExUU8//bQuXbpkdSSnVahQIU2bNk2zZs3SqlWrrI4DAAAAAAAAAAAsQPEnAAAAACDLBAQEaNKkSfr++++VlJSkGjVqqGfPnhT6QZJUvHhxbdy4UdeuXdNTTz2l6OhoqyM5rU6dOikkJEQvvPCCrly5YnUcAAAAAAAAAACQxSj+BAAAAABkuRo1amjr1q365JNPtHr1alWsWFGTJk1ScnKy1dFgsZIlS2rjxo2Kjo5W69atde3aNasjOa3JkydLkoYMGWJxEgAAAAAAAAAAkNUo/gQAAAAAWMJms6W8Cr5Hjx4aOnSonnjiCe3cudPqaLDYgw8+qLVr1+rkyZNq1aqVrl+/bnUkp+Tv76/p06fr008/VWRkpNVxAAAAAAAAAABAFqL4EwAAAABgKX9/f02aNEm7d++Wp6en6tWrp549e+rChQtWR4OFypcvr40bN+rYsWPq2LGj4uLirI7klNq2bavu3burb9++io6OtjoOAAAAAAAAAADIIhR/AgAAAACcQvXq1bV582Z98sknWrt2rSpXrqxZs2bJGGN1NFikYsWKWrNmjX788Ud17NhRf/75p9WRnNKkSZOUnJysl19+2eooAAAAAAAAAAAgi1D8CQAAAABwGrdeBX/48GGFhIRo4MCBatCggfbv3291NFikWrVq+uabb7Rz504FBwcrMTHR6khOp0CBApo5c6bmzp3L698BAAAAAAAAAMghKP4EAAAAADgdPz8/hYeHa/fu3TLG6LHHHlNoaKiuX79udTRYoFatWlq1apXWr1+vXr16KTk52epITqddu3YKDg7W888/rytXrlgdBwAAAAAAAAAAZDKKPwEAAAAATqtatWratm2b5syZo//85z+qVKmSli5danUsWKBevXpavny5lixZor59+8oYY3UkpzN58mQlJiZq+PDhVkcBAAAAAAAAAACZjOJPAAAAAIBTu/Uq+AMHDqhp06bq0qWL2rVrp1OnTlkdDVmsadOmWrhwoT7//HMNGTLE6jhOp0CBApoxY4Zmz56tb775xuo4AAAAAAAAAAAgE9lMFj0qY8eOHfrwww+z4lRAhtWtW5cfEv/hww8/1I4dO6yOASCbiYiIsDpCunDfAgCZw1H32Rs3btTAgQN16tQpvfbaaxo2bJjc3NwckBDZxfz58/V///d/Gjt2rEaNGmV1HKcTFBSkbdu26cCBA/L397c6DgAAAAAAAAAAcLyILHvy56lTp7R48eKsOh2QblFRURQ53sGOHTsUFRVldQwA2cTp06ez9brPfQsAOJ4j77ObNGmiH374QcOGDdMbb7yhWrVq6bvvvnPIsZE9hISEaMqUKXrllVcUHh5udRyn8/HHHysxMVEjR460OgoAAAAAAAAAAMgk7ll9wuz6BDDkHIGBgVZHcFp16tRhDAOwy6JFixQUFGR1jAxjzgMAx3H0fbaXl5fCwsLUo0cPDRw4UHXr1lXfvn313nvvydfX16HngnMaMGCAbt68qSFDhsjX11d9+vSxOpLTKFiwoD766CMFBwerU6dOatGihdWRAAAAAAAAAACAg2XZkz8BAAAAAHC08uXLa82aNZo9e7aWLFmiypUra+nSpVbHQhYZPHiwRowYoX79+vE/bfxDt27d1KVLF/Xr10/Xrl2zOg4AAAAAAAAAAHAwij8BAAAAANmazWZT7969dfjwYTVv3lxdu3ZV586ddebMGaujIQu8/fbbGjRokEJCQhQZGWl1HKcybdo0xcXFacSIEVZHAQAAAAAAAAAADkbxJwAAAADAJRQsWFCffPKJvv32W/3000+qXLmyJk2apOTkZKujIZN98MEHCgkJUdeuXbVlyxar4ziNggULatKkSZo+fbrWrFljdRwAAAAAAAAAAOBAFH8CAAAAAFxKw4YNtWfPHvXv319Dhw5V48aNdeTIEatjIRPZbDbNnDlTbdq0Ubt27fTDDz9YHclpBAcHq3Pnzrz+HQAAAAAAAAAAF0PxJwAAAADA5Xh5eemdd97Rrl27FBsbqxo1aigsLEwJCQlWR0MmcXNz0/z581W3bl21bNlShw4dsjqS05g2bZpiY2M1atQoq6MAAAAAAAAAAAAHyRbFn0eOHNG//vUvPfLII8qXL5/c3d3l5+enChUqqE2bNtqxY0eajvf++++rcOHCstlsmj59usPzJicnKzw8XPXq1Uv3MaKiovTwww8rV65cstlsKlKkiMaOHevAlBm3ZMkSlSlTRjabTTabTUWLFlVISIjVseCCVq1aJT8/P61cudLSHJk9d0jS22+/LT8/P9lsNv3444+Zcg5HccRcd8vevXsVHByshx56SB4eHipYsKCqV6+eoXkvs/uN1XNgduorQHbTt29f5cuX77bx5Szr0d85ci6WHH/fnZ39c56/07/SpUtbHTOV7NR3s9Kjjz6qqKgovfHGG5owYYJq166tXbt2WR0LmSRPnjxasmSJKlWqpKefflq//vqr1ZGcQqFChRQeHq6pU6dq7dq1VscBAAAAAAAAAAAO4PTFn3PmzFHVqlW1b98+ffjhhzp16pRu3LihPXv26K233tKVK1e0f//+NB1z2LBh2r59e6bkPXr0qBo1aqQhQ4YoNjY23cepU6eODh06pKefflrSXz/Ejx492lExHaJLly765ZdfVLZsWfn5+emPP/7Q/PnzrY4FF2SMsTqCpMydO24ZNWqUZsyYkanncARHzXWStH//ftWrV09FixbVxo0bFRMTo+3bt6tly5batGlTuo+b2f3G6jkwu/QVIDuaPXu2Zs2addvnzrIe3eLIuVjKnPvu7Oyf87wxRsYYJSYmKjY2VufOnZO3t7fVMVPJLn3XCu7u7hoxYoT279+v/Pnzq27dugoNDdWNGzesjoZM4O3trZUrV6pw4cJq3ry5zp49a3Ukp9C9e3d16NBB/fv3d8i6AQAAAAAAAAAArOVudYB7iYqKUr9+/fTkk09q9erVcnf/X9wyZcqoTJky8vf319GjRy1M+T979+7VmDFjNGDAAN24ccPlfmSNi4tTs2bNMr34DTlDWvpTmzZtFBMTkwWpYA9Hz3Xvv/++/P39NXHixJTPKlSooLfeektdunRJtS39Bq6Mddb5OdO84ui5ODPuu121T7u5ucnLy0teXl6qUKGC1XHs4kx912rlypXT+vXrNWvWLL388sv6+uuvBYlg8AAAIABJREFUNXPmTDVt2tTqaHAwPz8/RUZGqmHDhmrRooW+/fZbBQQEWB3LctOmTVPlypX1+uuv6/3337c6DgAAAAAAAAAAyACnfvLn2LFjlZSUpLfffjvVD9B/16JFC7300ktZnOzOqlevriVLlqhHjx7y8PCwOo7DzZkzR+fPn7c6BlyElf3JGKOIiAjNnDnTkvNnd46e6y5duqSYmBhdvnw51ed58uS57fW09Bu4Mkf1b/qqY9hstkw/R0b+Vo6eizPjvjsn9Olly5ZZHeE2zt53nYHNZtMLL7ygw4cPq1q1anrqqafUs2fP2+5FkP0VLlxY69at05UrV9SuXTuedimpaNGievfddxUeHq4dO3ZYHQcAAAAAAAAAAGSA0xZ/xsfHa/369SpQoIAef/xxu/czxujDDz/Uww8/LA8PDwUEBKhjx446fPiwQ/Z999135e3trXz58un8+fMaOnSoihcvriNHjtid8ZtvvpGvr6/GjRtn9z63TJ06VT4+PvL29tby5cvVqlUr+fr6qkSJEvryyy9Ttvvoo4/k6empwoULq3///ipWrJg8PT1Vr1497dy5M2W7QYMGKU+ePCpatGjKZy+++KJ8fHxks9l08eJFSdLgwYM1dOhQHT9+XDabTeXKlUtzdknasmWLKleuLD8/P3l6eqpq1apavXq1JKlv376y2Wyy2WwqW7as9uzZI0nq3bu3vL295efnpxUrVkiSkpKS9Prrr6tUqVLy8vJStWrVtHDhQkmO+RvBMb799ls9/vjj8vb2lq+vr6pWraqrV6/esT/d7e82Z84clSpVSjabTVOmTJFk/ziQ/uor48ePV8WKFeXl5aWCBQvqoYce0vjx49WtWzeHXKe9805656dz586pdOnScnd3V8uWLSXZP3btnQsyg71zXe3atXXjxg01bdpU27Ztu+t2rtBv6Cuu7/PPP1etWrXk6ekpHx8flS5dWm+99Zake6+Bd1tn77Xe3frenr6akXuchg0b2r0+2+te15WWsXq/Nk/LmHvvvfdUsWJFeXh4yM/PTy+//HKqbbZu3eqU88r92DMXp/e+mz6dGn03+ylWrJiWLl2q+fPn65tvvlH16tUVGRlpdSw4WMmSJbV+/XodPXpU3bp1U0JCgtWRLNenTx81bdpU/fv3pz0AAAAAAAAAAMjOTBZZuHChScvpfv75ZyPJ1KlTJ03nef31102ePHnM559/bq5cuWL27dtnHnvsMVOwYEHzxx9/pGx39OhRI8lMmzYtzfu++uqrRpIJDQ01kydPNp07dzaHDh1KleOJJ54w1atXv2PGr776yuTLl8+MGTPmvtfTokULI8lER0ffdv7169ebmJgYc/78edOwYUPj4+Nj4uPjU7br16+f8fHxMT/99JP5888/zcGDB03t2rVNvnz5zG+//ZayXY8ePUyRIkVSnfe9994zksyFCxdSPuvSpYspW7bsbRnLli1r/Pz87nstxhgTERFhwsLCzOXLl82lS5dMnTp1TIECBVKdw83Nzfz++++p9uvevbtZsWJFyn8PGzbMeHh4mMWLF5vo6GjzyiuvmFy5cpnvv/8+VRvd6290N127djVdu3a1a9ucJK3tcv36dePr62smTJhg4uLizB9//GE6d+6c0qfu1J/u9nc7deqUkWQmT55827b3Gwfjxo0zbm5uZvny5SY2Ntbs3r3bFClSxDRu3Dhd7ZCRucPe7b788ksjyezZs8cYY0x8fLzp0qWLWb58eaos9o5de+eC9HDEXBcbG2tq1aplJBlJpnLlymbChAnm0qVLt23rjP0mLXNgTuoraV33nU168oeHhxtJ5u233zaXLl0yly9fNjNmzDA9evQwxti3Bv6zf99vvbO3r2b0Hsfe9dle9q7j9xur92vztFy3zWYzH3zwgYmOjjaxsbHm448/TjW+jDFOtR79XUbn4vTed+eUPn2neT40NNTs37//tjah796bM99nX7hwwQQHBxtJ5rnnnjNXrlyxOhIc7LvvvjN58+Y1PXr0MElJSVbHsdwvv/xifHx8zLhx46yOAgAAAAAAAAAA0meR0xZ/7tq1y0gyTz31lN37xMbGmrx585rg4OBUn3/33XdGUqofvf9ZwJWWfW/9UBoXF3fXLPf6ET4t7lX8+ffz3/qR99ixYymf9evX77Yfqr///nsjybz55pspn2Vl8ec/jR8/3kgy58+fN8YYs27dOiPJjB07NmWbmJgYU758eZOYmGiMMSYuLs54e3un+lvFxsYaDw8PM3DgQGOMfX+ju3HmH6WtlNZ2OXDggJFkvvrqqzt+f68ivn/+3e5VsHC/cVC7dm3z+OOPpzreCy+8YHLlymVu3rxp9/Xckt65Iy1zzN8L+hISEswzzzxjIiMjb8uSloI+e+aC9HDUXBcfH28mTZpkKlWqlFIEWrhwYbNp06ZU2zljv7F3DsxpfSWnFX/Gx8cbf39/06RJk1SfJyYmmokTJ95xn3+ugf/s3/asd/b0VUfc49izPtsrvev4P8fq/do8LWPO29vbNG/ePNV2/yyuNsa51qO/y+hcnJ777jtx1T5dtmzZlLXp7//uVfxJ372z7HCf/dVXX5kHHnjAFC1a9Lb/mQLZ3/r1642Hh4d56aWXrI7iFCZMmGA8PDzMwYMHrY4CAAAAAAAAAADSbpHTvvY9b968kqTY2Fi79zl48KCuX7+uWrVqpfq8du3aypMnzz1fW5uRfZ1Bnjx5JOm+r2yrVauWvL297/vq4KySO3duSX+9TlKSmjZtqgoVKmju3LkyxkiSFixYoODgYLm5uUmSjhw5otjYWFWpUiXlOF5eXipatKjTXBekMmXKqHDhwgoJCVFYWJh+/fXXTD/nncbBn3/+mdKXbklKSlLu3LlT+lRG2Dt3pGeOSUpKUvfu3VW4cOGUV3g7ijPOBYMGDdKhQ4cUFRWljh076vz58woMDFR0dHSmnjur+g19xbXt27dPV65cUYsWLVJ97ubmptDQ0Dvu88818J/sWe/s6auOuMexZ322V3rX8X+O1fu1ub3XfezYMcXGxqpZs2Zpuo57sWI9yoj03HffiSv3aT8/PxljUv7dbVzfCX03e2nTpo0OHjyo9u3bq0OHDurWrZsuX75sdSw4SNOmTfXpp59q6tSpmjBhgtVxLDdkyBBVqVJFffv2VXJystVxAAAAAAAAAABAGjlt8Wfp0qXl6empn3/+2e59rly5Iul/P2D/nb+/v65du5Yp+2Y3Hh4eunDhgiXn/vrrr9W4cWMVKlRIHh4eGj58eKrvbTab+vfvr19++UXr16+XJM2bN099+vRJ2ebGjRuSpNGjR8tms6X8O3nyZIaLFuA4Xl5e2rBhgxo0aKBx48apTJkyCg4OVlxcXJbmaN26tXbv3q3ly5crLi5Ou3bt0rJly9S2bVuHFCzYO3ekZ4556aWXdPToUU2fPl0//fRThrP+k5Vzwb088cQT+u9//6sBAwbowoUL2rhxY5ZnyIx+Q19xbVevXpX019/obu63Bv6TPeudPX3VEfc49qzP9nLUOn6/Nrf3uk+fPi1JKlSokP0XkQ6ZvR5lRHruu6Wc3acnTpyYqog1Lei7zs/f318zZszQV199pW3btqlKlSpasWKF1bHgIMHBwZoyZYpGjRql2bNnWx3HUu7u7po7d6527dqlGTNmWB0HAAAAAAAAAACkkdMWf3p4eKhFixa6ePGitm3bdtftLl++rL59+0r63w+od/rB98qVKypRosRdj5ORfbOThISELL2ezZs3Kzw8XJL022+/qVOnTipatKh27typmJiYOz5tpVevXvL09NTs2bN15MgR+fr66sEHH0z5/tYP3OHh4amewGSM0Y4dO7LkumCfRx55RCtXrtSZM2c0YsQILVy4UO+//36WZggLC1PTpk3Vq1cv+fr6qnPnzurWrZtmzZrlkOPbO3ekZ47p1q2b1q5dK39/f/Xs2VOJiYkOySxl/VxwL126dLnjtT377LOSMv4kuvRwVL/5+xxIX3FtDzzwgCTp4sWLd/ze3jXw7+xZ7+zpq466x7nf+mwvR63j92tze6/b09NTknTz5k37LyIdMns9yoj03HfTp9OPvpt9tGnTRgcOHFC7du14CqiLGTBggEaPHq3+/ftryZIlVsexVLVq1TR06FCNHDlSp06dsjoOAAAAAAAAAABIA6ct/pT++qHRw8NDQ4YMuevTAg8cOCB3d3dJUpUqVZQ3b17t2rUr1TY7d+5UfHy8ataseddzZWTf7GTTpk0yxqhOnTopn7m7u9/3dfHptXv3bvn4+EiS9u/fr4SEBA0cOFBlypSRp6enbDbbbfsEBAQoKChIy5Yt0/vvv6/nn38+1fclS5aUp6enfvzxx0zJDMc4c+ZMyhMICxUqpLfffluPPfZYpjyV8F4OHjyo48eP68KFC0pISNBvv/2mqVOnKiAgwCHHt3fuSM8c06RJExUsWFAzZ87U7t27NXbs2FTfZ2Ts3mkusMrNmzfv2C+OHDki6a8fpLOao/rN3+dA+oprK126tPLnz681a9bc8Xt718C/s2e9s6evOuoe537rs70ctY7fr83TMuZy5cqlb7/9NkN57iez16OMSut9N336L2fPnlXv3r3TtA99N3sJCAjQjBkztHLlypSngK5cudLqWHCAMWPG6MUXX1RISIg2b95sdRxLhYWFqXjx4urfv7/VUQAAAAAAAAAAQBo4dfHno48+qv/85z86cOCAGjZsqFWrVikmJkYJCQk6ceKEZs2apT59+ih37tyS/nr6zdChQ7V06VLNnz9fV69e1f79+zVgwAAVK1ZM/fr1u+u5MrJvWkVGRsrX11fjxo1z2DHvJjk5WdHR0UpMTNS+ffs0ePBglSpVSr169UrZply5crp8+bKWLVumhIQEXbhwQSdPnrztWPnz59eZM2f066+/6tq1a/csJEpISNC5c+e0adOmlMKnUqVKSZLWrVunP//8U0ePHtXOnTvvuP+AAQN08+ZNffXVV2rXrl2q7zw9PdW7d299+eWXmjp1qq5evaqkpCSdPn1aZ8+eTWsTIZOcOXNG/fv31+HDhxUfH689e/bo5MmTKQVkaelPGfHSSy+pVKlSun79eqYc3965IyNzTPv27dWrVy+NGzdOu3fvTvnc3rEr2TcXOFpa5rpOnTpp0aJFunLlimJiYrR8+XKNHDlSHTp0SFX8mV36zZ3mQPqKa/Pw8NArr7yizZs3a9CgQfr999+VnJysa9eu6aeffrJrDfxn/3Zzc7vvemdPX3XkPc691md7OWodv1+b23vdhQoVUpcuXbR48WLNmTNHV69e1b59+zRz5sx0Xd/dZPZ6dDf2zsVpve/O6X3aGKO4uDgtWbJEvr6+du8n0Xezq7Zt26Y8BbR9+/bq1q2boqOjrY6FDAoPD1f79u3Vrl077dmzx+o4lvHw8NC0adMUGRmphQsXWh0HAAAAAAAAAADYy2SRhQsXmvSe7rfffjPDhg0zVatWNXnz5jVubm7G39/f1KhRw/Tp08ds27YtZdvk5GTz3nvvmfLly5vcuXObgIAA06lTJ3PkyJGUbT744ANTpEgRI8n4+PiYzp07273vhAkTjJeXl5FkSpYsaT7//POU73bs2GHq169vihUrZiQZSaZo0aKmXr165ttvv03ZbtWqVSZfvnxm7Nixd73mqKgo88gjj5hcuXKlHGfcuHHm448/Nt7e3kaSKV++vDl+/LiZOXOm8fX1NZLMgw8+aH7++WdjjDH9+vUzuXPnNsWLFzfu7u7G19fXdOzY0Rw/fjzVuS5dumSaNGliPD09zUMPPWT+9a9/mZdfftlIMuXKlTO//fabMcaYH374wTz44IPGy8vLNGjQwEybNs2ULVs25Vrv9m/p0qUp5xoxYoTJnz+/8ff3N4GBgWbKlClGkilbtmzKeW6pUaOGGTVq1B3b5+bNm2bEiBGmVKlSxt3d3RQqVMh06dLFHDx48J5/I3t07drVdO3aNU375ARpbZdff/3V1KtXzwQEBBg3NzfzwAMPmFdffdUkJiYaY27vT0OGDLnj323y5MmmaNGiRpLx9vY27du3T9M42LBhgylQoECqPpk7d27z8MMPmyVLlqSpDTIyd9i73ZIlS0xAQICRZEqXLm3Onz9vrl69akqWLGkkmbx585p58+YZY+wfu/bOBfZy5FxnjDFr1qwxQUFBpmzZssbDw8PkyZPHVKxY0YSFhZk///wz1bbO1G+WLl2a5jkwJ/WVjKz7ziC9+adMmWKqVq1qPD09jaenp6lRo4b5+OOPjTH3XwP/2b//+OOPe653xtg/x2X0Hufv7rU+2+te15WWsXq/Nrd3zF27ds307dvXFChQwOTNm9c0aNDAvP7660aSKVGihNm7d69TrUfGOH4uviUt992u3qftnedHjx5tjDH0XTu4yn12RESEKVy4sClVqpRZvXq11XGQQTdv3jQtWrQwhQoVum2M5TQvvPCCKViwoDl//rzVUQAAAAAAAAAAwP0tshljjL2FohmxaNEiBQUFKYtOB0n9+/dXRESELl26ZHWUdGnTpo2mTJmihx56KEvPGxgYKEmKiIjI0vM6u+zaLlOnTtXRo0cVHh6e8ll8fLxGjhypqVOnKjo6Wl5eXhYmzHzZfS6wQk7tN47sK9l93c8u+a3oq1atz9ldTp1X0oo+7Xwc+TfJrveTdxIdHa2RI0dq1qxZev755/XBBx8ob968VsdCOl27dk1NmjRRdHS0tm7dqmLFilkdyRJXr17VI488ombNmunTTz+1Og4AAAAAAAAAALi3CKd+7TsyLikpyeoIdvv765v3/T97dx4e47n/cfwzsocEldqboqWEUEpriVrOaal9SUTLCdoSqhWaEqpI7VvtS6mtlpIEB7G1amtUotLWUkqVKmqr2okSmd8f/dU5ji0hyT3L+3Vd889kkuedp9/nnjknt5ldu+Tp6ckf4fFITp48qW7duumNN9647X53d3f5+/vrxo0bWfax4bbGntYC05x9bpgV+5Fds8rz86Nz9nUlvZhp28Ps3lvevHk1bdo0xcTEaMmSJSpfvrwSEhJMZ+Eh+fj4aO3atXJ3d1e9evV07tw500lG+Pr66uOPP9bcuXP1+eefm84BAAAAAAAAAAAPwOZP2IyoqCgdOHBAP/30kzp06KBBgwaZToKd8/Lykpubm2bOnKlTp07pxo0bOn78uGbMmKH+/furdevWOn78uCwWywNvrVu3Nv3rZJl9+/Y5/Tn4b+mZG19fX9OZQLbNanqen1lH7o/no/SxpZnGX3hOfLCQkBDt2bNHZcuWVZ06ddS7d29dv37ddBYegp+fn9atW6cLFy6oYcOGunr1qukkIxo2bKjg4GCFh4fr8uXLpnMAAAAAAAAAAMB9sPnTQb3//vuaPXu2Lly4oOLFi2vx4sWmkx7I29tbpUuX1j//+U9FR0crICDAdBLsXO7cufXFF1/ohx9+UKlSpeTl5aWAgADNnj1bw4cP16effqrSpUvLarU+8LZo0SLTv85DSc9a4OjnIKPSMzeOyB6fN5xdds1qep6fWUfuj+ej9LGlmcZfnPU5MaMKFCigFStWaMqUKZo8ebIqV66snTt3ms7CQyhatKhWrVqlffv2qU2bNk77jugTJkzQpUuX1L9/f9MpAAAAAAAAAADgPixWq9WaHQeKjY1VaGiosulwwEMLCQmRJMXFxRkusS2cFwAZYe/P+/beDwC2yBleT/7yyy9q166dtm/frujoaPXs2VM5cvBvLu3N119/rZdeeknt2rXT1KlTTecYMXv2bL355ptKSEhQ9erVTecAAAAAAAAAAIA7xfFXKAAAAAAAMkHx4sW1ceNGRUdHq3///qpZs6YOHjxoOgsZVKNGDcXGxmrGjBkaPHiw6RwjOnTooH/+85/q3Lmzrl+/bjoHAAAAAAAAAADcBZs/AQAAAADIJC4uLoqKilJycrKuXLmiSpUqafr06aazkEGNGjXS5MmT1b9/f82aNct0jhFTp07VoUOHNGLECNMpAAAAAAAAAADgLtj8CQAAAABAJgsMDFRSUpK6dOmiLl26qEGDBjpx4oTpLGRAp06d1KdPH3Xu3Flr1641nZPtSpQooYEDB2rIkCHav3+/6RwAAAAAAAAAAPA/2PwJAAAAAEAW8PT01PDhw/Xll19q7969qlixolasWGE6CxkwePBgtW3bVi1btlRSUpLpnGwXERGhsmXLKjw8XFar1XQOAAAAAAAAAAD4L2z+BAAAAAAgC9WpU0c7d+5U/fr11bRpU3Xu3FlXr141nYV0sFgsmjZtml588UU1adJEBw4cMJ2UrVxcXDRt2jRt2bJF8+bNM50DAAAAAAAAAAD+i2t2H9BisWT3IYEMCw4ONp1gkxYvXsw1DMCpsOYBQOZy5tfZuXPn1pw5c9SkSRN16tRJmzZt0oIFC/Tcc8+ZTsMDuLm5acmSJapbt65eeeUVbd26Vfnz5zedlW0qV66st956S++++65eeeUVPf7446aTAAAAAAAAAACADGz+jImJye5DOoTExESNGzeO85cNxo4dazrBZlWtWlU9evQwnQFDWIeQEX/Pi71j3mFLQkND1b17d1WrVs10CvBQeJ39lxYtWqh69erq0KGDqlatqr59+6pfv35ycXExnYb78Pb2Vnx8vGrUqKFGjRpp48aNypkzp+msbDNkyBAtXbpUvXv31syZM03nAAAAAAAAAAAAGdj82apVq+w+pMMYN24c5y8bxMXFmU6wWUWLFmUGnRzrEDLCETZ/Mu+wJaGhoapWrRpzCbvF6+z/KFiwoFavXq0JEyYoKipKX331lebOnauiRYuaTsN9PP7441qzZo2qV6+u0NBQLVu2TK6u2f5/qxjh4+Nz638LtGnTRnXr1jWdBAAAAAAAAACA08thOgAAAAAAAGdjsVgUERGh5ORknTlzRuXKldNnn31mOgsP8NRTT2nlypXatGmTunTpYjonWwUHB6tx48bq0qWLrl27ZjoHAAAAAAAAAACnx+ZPAAAAAAAMKVeunLZt26Z27dqpbdu2CgsL0+XLl01n4T6qVKmimJgYzZkzR4MGDTKdk60mTpyo48ePa9SoUaZTAAAAAAAAAABwemz+BAAAAADAIC8vL40fP15r1qzRunXrFBgYqK+//tp0Fu6jYcOGmjJligYMGKBZs2aZzsk2/v7+GjBggIYMGaJ9+/aZzgEAAAAAAAAAwKmx+RMAAAAAABtQr1497dy5U2XLllXt2rUVHR2tmzdvms7CPXTs2FF9+/ZVp06dtHz5ctM52aZ79+4KCAhQ586dZbVaTecAAAAAAAAAAOC02PwJAAAAAICNyJ8/v+Lj4zV58mSNGjVKQUFBOnjwoOks3MPAgQP1r3/9S23btlVycrLpnGzh6uqqadOmacuWLZo/f77pHAAAAAAAAAAAnJbdbv5cvXq1cufOrfj4eNMpAGwQawQAZBxrJwDYBovFok6dOmn79u1KSUlRpUqVtHDhQtNZuAuLxaLp06crKChIjRo10uHDh00nZYsqVaqoc+fO6tGjh86cOWM6BwAAAAAAAAAAp2S3mz/5aDEA98MaAQAZx9oJALYlICBAiYmJatOmjV577TWFh4crJSXFdBb+h5ubm2JjY1WoUCE1aNBA586dM52ULYYOHSpPT0/17t3bdAoAAAAAAAAAAE7Jbjd/NmzYUBcuXFDjxo1NpyglJUXVq1c3nWFUdpwDznPm+PXXX7VgwQJdvnzZdEqWYo1AZmOds18LFy7UDz/8YDrDLrB2whmwnsPeeHl5acqUKfr3v/+txYsX67nnntOuXbtMZ+F/+Pj4aNWqVbp8+bKaNWumP//803RSlvP19dXYsWM1a9Ysbdy40XQOAAAAAAAAAABOx243f9qSmTNn6vTp06YzjMqOc8B5zhwnT55U27Zt5efnp9DQUK1YsULXr183neXQmF3HwDpnv2bMmKHAwECVLl1aw4YNc5qPY7V3XA/IKqznsFfNmjXTjh075OfnpxdeeEHjx483nYT/UbhwYa1Zs0Y7d+5U+/btneIdtUNCQtSoUSN16dLFKTa8AgAAAAAAAABgS+xy8+eWLVvk7+8vi8WiSZMmSZKmTJminDlzytvbW8uXL9crr7wiX19fFS1aVAsXLrz1vRMmTJCnp6fy58+vzp07q1ChQvL09FT16tW1bdu2W4/r1q2b3N3dVbBgwVv3de3aVTlz5pTFYtGZM2ckSd27d1dkZKQOHjwoi8Wip59+WpK0du1a+fr6asiQIdlxSjLMarVqzJgxKlOmjDw8PJQ3b141a9ZM+/btu/WYRzkHnGfb9+eff2rp0qVq1qyZ8uXLpzfeeEMbN25UWlqa6bRHxhoBiXUO//H3xov9+/erf//+KlGihKpUqaKJEyfq1KlThutsB2snbBXrOfAfTzzxhDZs2KCoqChFRkaqRYsWOnv2rOks/JeyZcsqJiZGixcv1sCBA03nZItJkybpt99+06hRo0ynAAAAAAAAAADgXKzZJCYmxpqZhzt69KhVknXixIm37uvbt69VknX9+vXWCxcuWE+fPm2tWbOmNWfOnNbr16/felx4eLg1Z86c1r1791qvXbtm3bNnj7VKlSpWHx8f65EjR249rk2bNtYCBQrcdtxRo0ZZJVl///33W/e1bNnS+tRTT932uJUrV1p9fHysAwcOzJTfN7PPX//+/a3u7u7WefPmWc+fP2/dtWuXtVKlSlY/Pz/ryZMnbz3uUc6BPZ5nq9VqDQ4OtgYHB2faz7M1SUlJVkl33Nzd3a2SrH5+ftZu3bpZExISrGlpabe+z97Oi7OtEdkhs9ehrMY6Z5YtzUudOnXuWPMsFovVxcXFarFYrFWrVrWOGzfOeubMmVvfY0v92Ym107ZJssbExJjOyHas547D3l5P2rqNGzdaixQpYvX397dwYFYrAAAgAElEQVQmJCSYzsH/mDFjhtVisVjnzJljOiVbjBw50urh4WHdt2+f6RQAAAAAAAAAAJxFrF2+8+eDVK9eXb6+vnr88cfVunVrXblyRUeOHLntMa6urrfePSggIEBTpkzRpUuXNHv27ExpaNiwoS5evKh+/fplys/LTCkpKRozZoxatGihtm3bKnfu3AoMDNTHH3+sM2fOaPr06Zl2LGc+z/bm749+P3PmjKZOnaqaNWuqaNGi6t27923vrOUIWCMcH+scHsRqtermzZuyWq3avn27IiMjVbBgQTVo0EBz587lY0vvgrUTJrCeA/dWu3Zt7dixQ+XLl1edOnUUHR2tmzdvms7C/3vjjTfUq1cvdezYUV9++aXpnCzXo0cPBQQEqHPnzk7xcfcAAAAAAAAAANgCV9MBWc3d3V2SdOPGjfs+rnLlyvL29na4TW53s2fPHl2+fFmVK1e+7f4qVarI3d39to+3zGz2cp6/++47tWrVynRGlkjPx0L+fb0cP35cH330kUaMGCFfX18VK1ZMR48e1RNPPJHVmdmGNcIxsc7ZDltYSw8fPnzfr//3Rpl169Zp7dq1cnNzkyR9/vnn+uc//ykXF5esTLQ7rJ3ILqznwP35+flpxYoVmjBhgqKiovTVV19p/vz5Kly4sOk0SBo2bJiOHTumli1basuWLQoMDDSdlGVcXV01depUVa9eXQsXLtRrr71mOgkAAAAAAAAAAIfnkO/8+bA8PDz0+++/m87IcufPn5ck5cqV646v5cmTR5cuXcrS4zvLeYbjYXbtB+scYDu4HvAoWM+BB7NYLIqIiNDWrVt17NgxVahQQatWrTKdBf3132bGjBkKDAxUkyZNdOrUKdNJWeqFF15Qp06dFBkZqQsXLpjOAQAAAAAAAADA4Tn8O3+m140bN3T+/HkVLVrUdEqWy5MnjyTd9Y/lWX0O7OU8V6pUSbGxsaYzssS2bdu0fv36+z7Gzc1NN27cUOHChfWvf/1L7du3v/URpY70rp8ZYS+zi7+wztkOW1hL69atq19++eWeX//7XT0tFoteeukltW7dWhaLRWFhYapXr152ZTokrgc8KtZzIP0qVaqkb7/9Vm+99ZYaN26syMhIDR069Na7WcMMT09PLV++XNWrV1fDhg21efNm5cyZ03RWlhk6dKiWLl2qAQMGaNy4caZzAAAAAAAAAABwaLzz5//btGmTrFarqlateus+V1fXB36cqT0qV66ccuXKpeTk5Nvu37Ztm65fv67nnnvu1n2ZfQ6c6Tzbm78/wtfPz09dunRRQkKCjh07puHDh6t06dKG68xjdu0L6xwexGKxyMXFRRaLRVWqVNFHH32kkydPavXq1QoLC5OHh4fpRIfA9YBHxXoOZIyPj4/mzZun2bNna+rUqapVq5aOHDliOsvp5cuXT2vWrNGRI0cUGhqqmzdvmk7KMnnz5tXw4cM1adIkff/996ZzAAAAAAAAAABwaE67+TMtLU3nzp1Tamqqdu3ape7du8vf31/t27e/9Zinn35aZ8+e1bJly3Tjxg39/vvv+vXXX+/4WY899piOHz+uw4cP69KlS7px44bWrFkjX19fDRkyJBt/q/Tx9PRUZGSkli5dqvnz5+vixYvavXu3unTpokKFCik8PPzWYx/lHEjOfZ7tgaurqywWi3LlyqW2bdtqw4YNOnXqlMaPH6+goCBZLBbTicYwu/aNdQ738ve699xzz2ns2LE6ceKEEhMTFRERoXz58pnOs3tcD8hsrOfAw2nXrp2Sk5N1+fJllS9fXkuWLDGd5PRKlCihpUuXav369erZs6fpnCzVvn17BQUFKTw8XGlpaaZzAAAAAAAAAABwWHa5+XPSpEmqUqWKJCkqKkpNmzbVlClTNHbsWElS+fLldejQIX3yySeKjIyUJNWvX18HDhy49TOuXbumwMBAeXl5qWbNmipVqpQ2btx42zt9vfXWW6pTp45effVVPfPMMxo0aJC8vLwkSdWqVdPRo0clSV26dFH+/PkVEBCgBg0a6OzZs9lyHh7FgAEDNHToUA0cOFB+fn6qVauWihUrpk2bNt32EXSPeg6c/TzbMg8PD7Vo0ULLli3TH3/8oZkzZ6pOnTrKkcMul4XbsEZAYp3Df/y9kf2ZZ57RwIEDdejQIW3fvl3vvPOOChQoYLjOdrB2wlaxngMPp3Tp0tq2bZtCQ0MVEhKiiIgI3rnWsKCgIM2dO1fjx4/XhAkTTOdkGYvFokmTJmnHjh2aM2eO6RwAAAAAAAAAAByWxWq1WrPjQLGxsQoNDVU2He6+OnfurLi4OP3xxx+mU9LNls5fetnjeZakkJAQSVJcXJzhkqzx66+/asuWLWratKly5cqV7u9z9PPy3+x1drOaPa5DWY1ZuTdbmpeFCxcqMDBQ5cqVS/f32FK/veB6yHoWi0UxMTFq1aqV6RSHw/xmD2d6PWlr5s6dq7feeksBAQGKjY1VsWLFTCc5tWHDhumDDz7QkiVL1KxZM9M5WaZ79+6aP3++9u3bJz8/P9M5AAAAAAAAAAA4mjj7f4u/h3Tz5k3TCU6B82x7nnzySbVp0yZDGz+dEbOL9GJWbN+rr76aoY2feHhcD7BnzC8cWVhYmJKTk3Xt2jVVrlxZq1evNp3k1Pr06aPXX39dbdu21XfffWc6J8sMGjRInp6e6tu3r+kUAAAAAAAAAAAcktNu/gQAAAAAwFn8/THwzZs3V6NGjfgYeMOmTp2q6tWrq0mTJvrtt99M52QJHx8fjRo1SjNmzFBSUpLpHAAAAAAAAAAAHI7Tbf58//33NXv2bF24cEHFixfX4sWLTSc5JM4z7BWzi/RiVoD/4HqAPWN+4Uy8vLz0ySefaM6cOZo5c6aCgoJ0+PBh01lOydXVVYsXL1bevHnVuHFjXblyxXRSlnj11VdVu3Ztde3alXdYBgAAAAAAAAAgkznd5s+hQ4fqzz//lNVq1S+//KLg4GDTSQ6J8wx7xewivZgV4D+4HmDPmF84o7CwMG3fvl1Xr15VlSpVtGbNGtNJTsnX11crVqzQsWPHFBYWprS0NNNJWWLq1Knas2ePPv74Y9MpAAAAAAAAAAA4FKfb/AkAAAAAgLMrU6aMEhMTVb9+fTVq1Eh9+/ZVamqq6SynU7x4cS1dulSrVq3SBx98YDonS5QqVUrdu3fX+++/rxMnTpjOAQAAAAAAAADAYbD5EwAAAAAAJ5QrVy7NmzdP06ZN09ixY/XSSy/p1KlTprOcTlBQkKZNm6Zhw4bpk08+MZ2TJfr376/HHntMvXv3Np0CAAAAAAAAAIDDYPMnAAAAAABO7M0331RiYqKOHTum8uXLa8OGDaaTnE67du3Uu3dvde3aVRs3bjSdk+m8vb01ZswYzZs3T5s2bTKdAwAAAAAAAACAQ2DzJwAAAAAATq5ChQr69ttv9eKLL6pevXoaMWKErFar6SynMnToULVs2VIhISE6cOCA6ZxM17x5czVo0EBvv/22bty4YToHAAAAAAAAAAC755rdB4yNjc3uQzqExMRESZy/7HDs2DEVLVrUdIZNOnbsGDPoxFiHkBF/z4u9Y95haxzl2oJz4nW27fP19VVsbKwmTJignj17auvWrfr000+VJ08e02lOwWKxaNasWapdu7aaNGmirVu3Km/evKazMtX48eNVrlw5TZgwQZGRkaZzAAAAAAAAAACwaxZrNr2VR2xsrEJDQ7PjUMAjCw4OVlxcnOkMmxISEqLFixebzgBgZ+z1HcN43QIAWYPX2fbjq6++UuvWrZUrVy4tXrxY5cuXN53kNE6cOKEXXnhBJUqU0BdffCF3d3fTSZkqOjpaY8aM0Y8//qgiRYqYzgEAAAAAAAAAwF7FZfvHvlutVm6ZeJOkmJgY4x2OdAsODs7uy8JuBAcHG//vw832bhLrELc7bzExMYZXrMxh+jxy4/agW3BwMM/P3Ozmxuts+/Liiy9qx44d8vf31wsvvKCZM2eaTnIahQoV0vLly5WcnKy33nrLdE6m69OnjwoVKqR3333XdAoAAAAAAAAAAHYt2zd/AgAAAAAA25c/f36tXbtWERER6tixo8LCwpSSkmI6yylUrFhRMTExmjNnjsaPH286J1N5eHho3Lhxio2N1bp160znAAAAAAAAAABgt9j8CQAAAAAA7srV1VXDhw/XsmXLFB8fr6CgIB06dMh0llNo2LChhgwZonfffVfx8fGmczLVK6+8oubNm6tbt266fv266RwAAAAAAAAAAOwSmz8BAAAAAMB9NWnSRN98841SU1NVqVIl/fvf/zad5BSioqL05ptvqk2bNtq1a5fpnEw1btw4HTlyRBMnTjSdAgAAAAAAAACAXWLzJwAAAAAAeKCSJUsqMTFRTZo0UXBwsAYMGKC0tDTTWQ5v4sSJqlSpkpo0aaJTp06Zzsk0/v7+eu+99/Thhx/q+PHjpnMAAAAAAAAAALA7bP4EAAAAAADp4u3trblz52ry5MkaMWKEGjVqpHPnzpnOcmju7u5asmSJ3Nzc1LJlS/3555+mkzJN7969lS9fPvXp08d0CgAAAAAAAAAAdofNnwAAAAAAIEM6d+6srVu3au/evXr22WeVnJxsOsmh5cuXT/Hx8dqzZ486depkOifTeHl5afTo0Zo3b54SEhJM5wAAAAAAAAAAYFfsbvNn586dZbFYbt3atm17x2O+/PJL9enTR2lpaWrevLn8/f3l6empIkWKqGnTptq1a9dDHz8tLU1jx45V9erV7/jaihUrNGLECN28efO2+5ctW3Zbs5+f30MfP6twXuFsbG2eYRuYC+D+uEZgL7JiVgcPHnzba8+/b+XKlbv1GGYVzqZSpUpKTk5WyZIlVbNmTc2ZM8d0kkMrXbq0Fi1apAULFmjcuHGmczJNy5Yt9fLLLysiIoL1EwAAAAAAAACADLC7zZ+S9Nhjj2nNmjXav3+/Zs6cedvXBgwYoAkTJuj9999XWlqaEhIS9Nlnn+ns2bPasmWLUlJS9OKLL+r48eMZPu6BAwf04osv6t1339XVq1fv+HqTJk3k6empf/zjHzp//vyt+5s2bapjx47pq6++UoMGDTL+C2cTziuchS3OM8xjLoD74xqBvcjKWX0QZhXOyM/PT2vXrlVERIQ6dOig8PBw3bhxw3SWw6pXr56GDRum9957T6tWrTKdk2nGjh2rH3744Y7/LwIAAAAAAAAAANybXW7+9PLyUv369VWqVCl5eHjcun/48OFatGiRYmNj5ePjI0mqVq2agoKC5O3treLFi2vIkCG6cOFCht+RZOfOnerdu7e6dOmiZ5999p6Pi4iIUIUKFdSgQQOlpqZKkiwWi4oUKaKaNWuqZMmSGf+FswnnFc7AVucZZjEXwP1xjcBeZOWsStK8efNktVpvu/3www+3PYZZhTNydXXV8OHDtXDhQi1YsEB169bVyZMnTWc5rJ49e6p9+/Z67bXXtGfPHtM5maJMmTJ6++231adPH/3xxx+mcwAAAAAAAAAAsAt2ufnzbn7++Wf169dPH374oTw9PSX99Qeo+Pj42x5XokQJSdLBgwcz9PMrVKigJUuWqE2bNrdtjLyb6Oho7dixwyE+ho3zCkfCPONumAvg/rhGYC+yelYzglmFs2rdurWSk5N15swZVa5cWYmJiaaTHNakSZMUEBCgFi1a6Ny5c6ZzMsWHH34oDw8PDRgwwHQKAAAAAAAAAAB2wWE2f06YMEFWq1VNmjS57+NSUlIkSb6+vlnWkjdvXtWqVUvjxo2T1WrNsuNkB84rHAnzjLthLoD74xqBvWBWAdtQunRpbdu2TVWqVFGdOnU0fvx400kOydPTU//+97+VkpKi0NBQh3inYR8fHw0dOlQff/yxduzYYToHAAAAAAAAAACb5zCbP1etWqVnnnlG3t7e933cN998I0kKCgrK0p6KFSvqt99+086dO7P0OFmN8wpHwjzjbpgL4P64RmAvsmNW+/Tpo7x588rd3V3FixdXs2bNtH379rs+llmFM/P19dXSpUv14Ycf6t1331VYWNitjdfIPAULFtTy5cv19ddfq2fPnqZzMkW7du1UpUoVvf3222yeBwAAAAAAAADgARxi8+eVK1f0yy+/6KmnnrrnY06dOqVFixYpIiJC1apVe+A7Aj2qkiVLSpJ2796dpcfJSpxXOBLmGXfDXAD3xzUCe5Eds9quXTutWLFCR48e1eXLl7Vw4UIdOXJEtWrV0p49e+54PLMKZ2exWBQVFaX4+HitXLlSNWrU0OHDh01nOZyKFStq7ty5Gj9+vKZPn24655FZLBZNnjxZiYmJWrhwoekcAAAAAAAAAABsmkNs/jx9+rSsVut93+WnWrVqioiIULNmzbRmzRq5ublladPfLadOncrS42QlziscCfOMu2EugPvjGoG9yI5ZfeKJJ1SxYkXlypVL7u7uqlq1qmbPnq2UlBRNnjz5jsczq8BfGjRooG3btun69et6/vnntWnTJtNJDqdly5Z6//339fbbb2vz5s2mcx5ZpUqV9PrrrysyMlIXL140nQMAAAAAAAAAgM1yiM2f165dkyR5eHjc8zH58+fXhg0bNHHiROXOnTvLm7y8vG5rs0ecVzgS5hl3w1wA98c1AnthalYDAwPl4uKin3766Y6vMavAf5QsWVJJSUmqVauWXnrpJU2aNMl0ksMZNGiQmjdvrpYtW+rQoUOmcx7Z8OHDdePGDQ0dOtR0CgAAAAAAAAAANsshNn/+/YfVmzdv3vMxjz/+uPLkyZNdSbp+/bqk/7TZI84rHAnzjLthLoD74xqBvTA1q2lpaUpLS7vrplNmFbhdrly5FBsbq8GDBysiIkJt27ZVSkqK6SyHYbFYNHPmTBUpUkQtWrTQlStXTCc9knz58ql///4aO3as9u/fbzoHAAAAAAAAAACb5BCbP/Pnzy+LxaILFy7c8zHx8fEqUqRItjX93VKgQIFsO2Zm47zCkTDPuBvmArg/rhHYi+yY1Xr16t1x3/bt22W1WlWtWrU7vsasAneyWCyKiorSypUrtWrVKgUFBenIkSOmsxxGrly5tGLFCp04cUL/+te/lJaWZjrpkXTt2lWlS5fWO++8YzoFAAAAAAAAAACb5BCbP729vVWiRAkdO3bsrl//+eefVaBAAYWGht7xtdatW6tAgQL67rvvMrXp75bAwMBM/bnZifMKR8I8426YC+D+uEZgL7JjVn/77TctWrRI58+f140bN5SYmKg333xT/v7+6tKlyx2PZ1aBe3vllVf0zTff6Nq1a6pataqSkpJMJzmMJ598UkuXLtXq1av14Ycfms55JC4uLpo8ebK+/PJLxcfHm84BAAAAAAAAAMDmOMTmT0lq2LCh9uzZc9ePjbNarff8vuvXr+v06dNavnz5fX9+UlKSgoKCVLhwYW3btk07d+5UoUKFVKNGDX311Vd3PH779u0qUqSIypcvn/FfxoZwXuFImGfcDXMB3B/XCOxFVs9q/fr19cEHH6ho0aLy9vZWq1atVKNGDSUlJSlfvnx3PJ5ZBe6vZMmSSkpK0gsvvKDatWtrxowZppMcRo0aNTRx4kQNGjRIS5YsMZ3zSIKCgtSqVSv16NFD165dM50DAAAAAAAAAIBNcTUdkFneeecdTZkyRUuWLFHbtm1v+1rJkiV16tSpu37f4sWLVbt2bT355JP3/flVq1bVli1b0tXyxx9/aP369Ro8eLAsFkv6fgEbxXmFI2GecTfMBXB/XCOwF1k9q6NHj9bo0aPT1cKsAunj4+OjpUuXauTIkQoPD9f27ds1adIkubm5mU6zex07dtTOnTvVvn17lSpVyq7fhXjUqFEqU6aMxo4dqz59+pjOAQAAAAAAAADAZtjlO3+mpKTo888/14EDB3T9+nVJ0tNPP62BAwdq4MCBunz5crp+zs2bN7Vs2TJdunRJrVu3zrS+6OhoPfvss+rWrZukv95p6Pjx49qyZYt+/vnnTDtOZuO8wtHZ8jzDHOYCuD+uEdgLZhWwTxaLRVFRUVq2bJkWLVqkunXr3nOzNjJm7Nixqly5spo0aaIzZ86YznloTzzxhHr16qWhQ4fq+PHjpnMAAAAAAAAAALAZdrn58+zZs6pfv75KlSql119//db9ffr0UUhIiFq3bq0LFy488Ods2rRJS5Ys0Zo1a+Tt7Z0pbWPGjNGOHTu0evXqW+9Wsnz5chUpUkQ1a9bUqlWrMuU4WYHzCmdgq/MMs5gL4P64RmAvmFXAfjVu3FhbtmzR8ePHVblyZW3fvt10kt1zc3PT4sWLZbFY9Oqrryo1NdV00kPr2bOn8uXLp759+5pOAQAAAAAAAADAZlisVqs1Ow4UGxur0NBQZcfhvvjiC23YsEHDhw/P8mP9t+XLl2vv3r3q1auXXFxcsuWYFotFMTExatWqVZYfy1nOa0hIiCQpLi4uy49lTxztvDjLPGeH7FyHshpzkXmy83k/K9h7f1bhGrE9jvb8nFmYVdvEvCI9zp49q9atWyshIUEff/yx2rVrZzrJ7u3YsUM1atRQ165dNXLkSNM5D23RokVq06aNEhMT9fzzz5vOAQAAAAAAAADAtDiH3PzpTBxp05Wt4I/Sd8d5wb2wDuFu7P1539774Tx4foY9YV6RXqmpqerVq5fGjRt36+O+c+Swyw8usRkLFixQ27ZtNXv2bLVv3950zkN78cUXlZqaqq+//loWi8V0DgAAAAAAAAAAJsXx1xMAAAAAAGAzXF1dNWbMGM2ePVvjxo1Ts2bNdOnSJdNZdq1Nmzbq0aOHunTpouTkZNM5D238+PHatm2bYmJiTKcAAAAAAAAAAGAcmz8BAAAAAIDNadeunTZt2qTt27ercuXK2r9/v+kkuzZq1CjVrl1bLVu21O+//24656FUrFhRYWFh6tmzp65evWo6BwAAAAAAAAAAo9j8CQAAAAAAbFLVqlWVnJys3Llzq3r16tqwYYPpJLvl4uKiBQsWyM3NTS1atND169dNJz2U4cOH6+LFi/roo49MpwAAAAAAAAAAYBSbPwEAAAAAgM0qUqSIvvrqKzVo0ED16tXThAkTTCfZrccee0xLly7V999/r169epnOeSgFChRQ7969NWzYMB05csR0DgAAAAAAAAAAxrhm9wFDQkKy+5AOb+zYsYqLizOd4TCSkpJUtWpV0xk2KSkpiWsYd8U6hP917Ngx0wmZgjUPti4pKUkSs4qMu3Hjhk6fPq3ChQvLYrFkyzF5nY1H4enpqblz56pcuXLq0aOH9uzZo0mTJsnNzc10mt0pX7685s6dq+DgYAUGBuqNN94wnZRhkZGRmjVrlvr27at58+aZzgEAAAAAAAAAwAiX6Ojo6Ow40MWLF3XhwoXsOJRTCQgIkK+vr+kMh1K0aFFVq1ZN1apVM51iUxxlIxcyH+sQ7sbX11cBAQFq1aqV6ZSHwusW2IuiRYuqaNGipjNgh06dOqWkpCQdPnxYqamp8vHxkatr1v7bQF5n41FZLBYFBQXpueee08CBA/X555+rUaNGypkzp+k0u1OmTBmlpKRowIABevnll1WkSBHTSRni4uKiIkWKqF+/fvrHP/4hf39/00kAAAAAAAAAAGS3vRar1Wo1XQEAAAAAyF6HDh3S9OnTNXPmTF28eFFNmzZVp06d9I9//CPb3g0UeFi7du1S06ZN5eLiouXLl6ts2bKmk+xOWlqaGjdurO+//17JyckqXLiw6aQMq1OnjlJSUpSYmMi6BQAAAAAAAABwNnE5TBcAAAAAALJfiRIlNHz4cB07dkzz58/XuXPn9NJLL6lMmTIaMWKEzp8/bzoRuKfy5ctr+/btt95RdsWKFaaT7E6OHDk0f/585cyZU8HBwfrzzz9NJ2XYuHHjlJycrAULFphOAQAAAAAAAAAg27H5EwAAAACcmIeHh0JCQrRu3TolJyerVq1aGjRokPz9/RUeHq7du3ebTgTuys/PT1988YVCQkLUrFkzRUdHm06yO3nz5tWyZcu0e/du9ejRw3ROhlWoUEEdOnRQ7969deXKFdM5AAAAAAAAAABkK5do/joCAAAAAJBUuHBhNW7cWF27dlWRIkUUFxengQMHauXKlfL09FRAQIBcXFxMZwK3uLi4qGnTpvLx8VG/fv30yy+/qEGDBsxpBuTPn1/PPPOMoqKi9OSTT+rZZ581nZQhVatW1UcffaTU1FTVqVPHdA4AAAAAAAAAANllr8VqtVpNVwAAAAAAbE9aWpq++OILTZkyRatXr1aBAgXUqVMnhYeHq2DBgqbzgNusWbNGrVu3VoUKFbR06VL5+fmZTrIrvXv31vjx45WQkKDKlSubzsmQUaNGacCAAdq7d6+KFStmOgcAAAAAAAAAgOwQx+ZPAAAAAMADHT58WNOmTdPMmTN18eJFvfbaa+rRo4cCAwNNpwG37NmzR40bN5bFYlF8fLwCAgJMJ9mNtLQ0NWjQQD/++KO+/fZbu9o8e/36dQUGBqpixYpatGiR6RwAAAAAAAAAALJDXA7TBQAAAAAA21esWDENGzZMR48e1fTp07V9+3aVL19eQUFBio+PF/+uELagbNmy2r59u4oWLaqqVatq1apVppPsRo4cOfTZZ5/JxcVFrVu31s2bN00npZu7u7tGjhyp2NhYbdmyxXQOAAAAAAAAAADZgs2fAAAAAIB08/DwUFhYmHbv3q2EhATlzZtXTZs2ValSpTR+/HhdvXrVdCKcXL58+fTFF1+oefPmatq0qSZMmGA6yW489thjWrp0qbZu3ap+/fqZzsmQpk2bqm7dunr33XfZjA4AAAAAAAAAcAou0dHR0aYjAAAAAAD2x9/fX6+99ppeffVVnT9/XiNHjtSUKVP0xx9/qEyZMvL19TWdCCfl6uqq5s2bK3fu3Hr33Xd1/Phx1a9fXy4uLqbTbF7BggXl7++v9957T2XLlmi+gUIAACAASURBVFVAQIDppHR79tlnFR0drZIlSyowMNB0DgAAAAAAAAAAWWmvxcrbIQAAAAAAMsHp06c1e/ZsTZgwQWfOnFFoaKh69uzJJiwYtWTJEoWFhSkoKEgxMTHKkyeP6SS70LlzZy1YsEDbtm2zqw2gb7zxhr744gvt379f3t7epnMAAAAAAAAAAMgqcWz+BAAAAABkqj///FMxMTEaNWqUfvjhB9WoUUNRUVFq1KiRLBaL6Tw4oR07dqhJkyby8vJSfHy8SpUqZTrJ5t24cUN16tTRmTNn9M0339jNO/meOnVKJUuW1Pvvv6/evXubzgEAAAAAAAAAIKvE5TBdAAAAAABwLB4eHgoLC9OuXbu0evVqeXl5qUmTJipfvrzmz5+v1NRU04lwMs8++6ySkpLk4+Oj6tWra/PmzaaTbJ6bm5vi4uJ08eJFhYWFyV7+7XCBAgUUGRmpoUOH6uTJk6ZzAAAAAAAAAADIMmz+BAAAAABkCYvFoldeeUXr1q3Tzp07VaFCBXXo0EElS5bU5MmTlZKSYjoRTqRw4cLavHmzatasqXr16unTTz81nWTzChUqpLi4OK1evVqjRo0ynZNuvXr1Up48efThhx+aTgEAAAAAAAAAIMu4REdHR5uOAAAAAAA4tgIFCqhFixYKCwvTuXPnNGLECE2ePFlXrlxRhQoV5OXlZToRTsDd3V2tWrXSpUuXFBUVdeujzS0Wi+k0m+Xv7y9vb2/17t1bVatW1dNPP2066YHc3NyUJ08eRUdHq0WLFsqfP7/pJAAAAAAAAAAAMttei9VePrcLAAAAAOAwfv/9d02ePFkTJkxQamqqOnTooF69eqlIkSKm0+AkZs6cqS5duqhly5aaPXu2PD09TSfZtNatW2vdunVKTk5W8eLFTec8UFpamp5//nkVKFBAq1atMp0DAAAAAAAAAEBmi2PzJwAAAADAmEuXLmnWrFkaOXKkzpw5o9DQUH3wwQcqVaqU6TQ4gfXr1ys4OFilS5fW8uXLeYfI+7hy5YqqVq0qV1dXbd261S7erXfjxo2qW7euPv/8c7388sumcwAAAAAAAAAAyExs/gQAAAAAmPfnn38qJiZGgwcP1sGDB9WgQQNFR0frueeeM50GB3fgwAE1bNhQN2/e1MqVK1WmTBnTSTbrwIEDqlKlioKDgzVjxgzTOenSqFEjHT16VN99951cXFxM5wAAAAAAAAAAkFnicpguAAAAAADAw8NDYWFh2rdvn5YtW6YTJ06ocuXKeumll/T111+bzoMDK1mypBITE1W4cGHVqFFDGzduNJ1ks0qWLKm5c+dq1qxZmjVrlumcdBk9erR+/PFHffrpp6ZTAAAAAAAAAADIVGz+BAAAAADYjBw5cqhx48bavn27VqxYoatXryooKEhBQUGKj48XH16BrJAvXz59+eWXql+/vurXr6+5c+eaTrJZTZo0UVRUlLp27arvvvvOdM4DlS5dWh07dlS/fv105coV0zkAAAAAAAAAAGQaNn8CAAAAAGyOxWJR48aN9fXXXyshIUF58+ZV06ZN9eyzz2ru3LlKTU01nQgH4+HhoQULFqhPnz5q166dIiIilJaWZjrLJg0ZMkQ1a9ZUixYtdPbsWdM5DxQdHa0rV65o1KhRplMAAAAAAAAAAMg0bP4EAAAAANi0v9/1c8eOHapQoYLeeOMNlSpVSuPHj1dKSorpPDgQi8Wi6OhozZw5U1OnTlXr1q2ZsbvIkSOH5s+fr9TUVLVr187m35H38ccfV58+fTRy5EgdPXrUdA4AAAAAAAAAAJnCYrX1/4ceAAAAAID/cuDAAY0cOVLz5s1Tvnz59N577yk8PFze3t6m0+BA1q9fr+DgYJUpU0bLli1T/vz5TSfZnMTERNWuXVsDBw5UVFSU6Zz7unbtmsqUKaM6depo1qxZpnMAAAAAAAAAAHhUcWz+BAAAAADYpd9++01jxozRxx9/rFy5cum9995Tly5dlCtXLtNpcBB79uxRo0aNlCNHDq1atUqlS5c2nWRzPvroI0VFRWnNmjV66aWXTOfc18KFC9W2bVt98803eu6550znAAAAAAAAAADwKLJv8+exY8e0devW7DgU8MieeOIJVatWzXSGTUlMTOTj8QBkWKtWrUwnPBRetwBA1siq19lnzpzRpEmTNG7cOLm6uurtt99W9+7dlSdPnkw/FpzPyZMn1bRpUx08eFDLli1TUFCQ6SSbYrVa1apVKyUkJOjbb79VkSJFTCfdk9VqVVBQkDw8PLRhwwbTOQAAAAAAAAAAPIrs2/wZGxur0NDQ7DgU8MiCg4MVFxdnOsOmhISEaPHixaYzANgZe32DcV63AEDWyOrX2X/88YcmTpyo8ePHKy0tTV26dFFUVJTy5s2bZceEc7h69aratm2rNWvWaN68eQoODjadZFMuX76s559/Xnny5NHmzZvl5uZmOumetmzZopo1a2rlypVq2LCh6RwAAAAAAAAAAB5W9m/+tNdNIHAeISEhksTmz//BeQGQEfb+vG/v/QBgi7Lz9eSlS5c0ZcoUjRgxQqmpqXrrrbfUq1cvPfbYY1l+bDguq9WqqKgojR49Wv3791d0dLTpJJvyww8/6IUXXtBbb72lUaNGmc65r5YtW2r//v3auXOnXFxcTOcAAAAAAAAAAPAw4nKYLgAAAAAAIDP5+PgoKipKv/76qwYNGqQ5c+boySefVEREhE6ePGk6D3bKYrFo5MiRGjt2rAYNGqSIiAilpaWZzrIZ5cqV0yeffKKPPvrI5j81YtiwYfrpp580Z84c0ykAAAAAAAAAADw0Nn8CAAAAABySj4+PIiIi9PPPP2vw4MGKjY3V008/rYiICJ04ccJ0HuxURESEYmNjNX36dAUHByslJcV0ks147bXX1KlTJ73++uvat2+f6Zx7KlWqlDp27Kj+/fvr6tWrpnMAAAAAAAAAAHgobP4EAAAAADi0XLly3doEOmTIEC1evFjFixdXeHi4fvvtN9N5sEMtW7bUhg0blJCQoLp16+rMmTOmk2zG+PHj9cwzz6hVq1Y2vbEyOjpaly9f1rhx40ynAAAAAAAAAADwUNj8CQAAAABwCjlz5lRERIQOHTqkCRMmaNWqVSpRooTCw8N17Ngx03mwM9WqVdPmzZt14sQJVatWTT///LPpJJvg4eGhJUuW6MSJE+rYsaPpnHt6/PHHFRkZqeHDh+vUqVOmcwAAAAAAAAAAyDA2fwIAAAAAnIqHh4c6deqkQ4cOaeLEiVqzZo2eeuophYWFsYEPGRIQEKDExET5+vqqZs2a+vbbb00n2QR/f399+umnWrRokT755BPTOfcUGRmpXLlyaejQoaZTAAAAAAAAAADIMDZ/AgAAAACckru7uzp16qSff/5Zn3zyiRITExUQEKCwsDAdOHDAdB7sRKFChbR582ZVrFhRtWrV0qpVq0wn2YQGDRqoT58+6tatm3bs2GE6565y5sypAQMGaOrUqWz8BgAAAAAAAADYHbvY/Ll//3698847Klu2rHx8fOTq6qrcuXOrVKlSatiwoRITEzP080aPHq38+fPLYrHo448/zrTOgQMHKiAgQL6+vvLw8NDTTz+tXr166fLlyxn+WUlJSSpTpoxy5Mghi8WiAgUKaPDgwZnWmhmWLFmiEiVKyGKxyGKxqGDBgmrbtq3pLDig1atXK3fu3IqPjzfakVVrx38bNmyYcufOLYvFYrN/IM3Mte5vO3fuVOvWrVW8eHF5eHjIz89PFSpUeKR1L6vnxvQaaA+zAtirN998Uz4+PndcX7byfCRlzVosZf7rbnv2v+v83W7FihUznXkbe5hdW+Xu7q6wsDDt3btXM2bM0LZt21S2bFmFhYXp4MGDpvNgB3LlyqUVK1botddeU9OmTTVt2jTTSTZh4MCBCgoKUkhIiC5cuGA6567efPNNlSxZUh988IHpFAAAAAAAAAAAMsTmN3/OnDlTgYGB2rVrl8aMGaOjR4/qypUr+v777zVo0CCdP39eu3fvztDPfO+997R169ZMb92wYYPefvttHT58WGfOnNHQoUM1btw4hYSEZPhnVa1aVT/++KNefvllSX/9Id7W/hDRsmVLHTp0SE899ZRy586tkydPav78+aaz4ICsVqvpBElZt3b8tz59+tj8H4ozc62TpN27d6t69eoqWLCgNm7cqAsXLmjr1q2qX7++Nm3a9NCdWT03ptdAe5gVwF7NmDHjrh9RayvPR1Lmr8VS1rzutmf/u85brVZZrValpqbq6tWrOnXqlLy9vU1n3sYeZtfWubm5KSwsTHv27NH06dO1ZcsWBQQEqEuXLjp27JjpPNg4V1dXTZs2TR988IE6d+6s3r17O/31lyNHDs2fP19XrlxRx44dTefclYuLi4YMGaLY2Fin+kcOAAAAAAAAAAD7Z9ObP5OSkhQeHq6aNWtq/fr1qlevnvLkySMPDw+VKFFCoaGh6t+/v65fv246VdJf7/QRHh6uxx57TD4+PmrVqpWaN2+utWvX6ujRo6bzHllKSoqqV69uOgMOIiPz1LBhQ124cEGNGzfO4iqkR2avdaNHj1aePHk0btw4FStWTJ6enipVqpQGDRokLy+v2x7L3MCR8Txr+2xpXcnstTgrXnc76ky7uLjIy8tL+fPnV6lSpUznpIstza69cHV1Vfv27bV//3598sknWrdunZ566imFh4fr+PHjpvNgwywWi6KjozVr1iyNGTNGr7/+um7cuGE6y6gCBQros88+09KlSzV58mTTOXfVrFkz1ahRQ7179zadAgAAAAAAAABAutn05s/Bgwfr5s2bGjZsmFxdXe/6mHr16untt9/O5rK7W7lypVxcXG67z8/PT5J09epVE0mZaubMmTp9+rTpDDgIk/NktVoVFxen6dOnGzm+vcvste6PP/7QhQsXdPbs2dvud3d3v+PjaZkbOLLMmm9mNXNYLJYsP8aj/LfK7LU4K153O8NML1u2zHTCHWx9du3N3+8E+uOPP2rixIlatWqVihcvrvDwcJ04ccJ0HmxYhw4dtHLlSi1ZskQNGjTQxYsXTScZVbt2bfXr10+RkZH69ttvTefc1ejRo5WQkKBVq1aZTgEAAAAAAAAAIF1sdvPn9evXtX79euXLl0/PP/98ur/ParVqzJgxKlOmjDw8PJQ3b141a9ZM+/bty5TvHTlypLy9veXj46PTp08rMjJSRYoU0f79++/6M3/77Td5eXmpePHit+5bu3atfH19NWTIkHT/Xn+bMmWKcubMKW9vby1fvlyvvPKKfH19VbRoUS1cuPDW4yZMmCBPT0/lz59fnTt3VqFCheTp6anq1atr27Zttx7XrVs3ubu7q2DBgrfu69q1q3LmzCmLxaIzZ85Ikrp3767IyEgdPHhQFotFTz/9dIbbJSkhIUEBAQHKnTu3PD09FRgYqM8//1yS9Oabb8pischiseipp57S999/L+mvP5p5e3srd+7cWrFihSTp5s2b6t+/v/z9/eXl5aXy5csrJiZGUsb/GyHrbN68Wc8//7y8vb3l6+urwMBAXbx48a7zdK//bjNnzpS/v78sFosmTZokKf3XgfTXrAwdOlTPPPOMvLy85Ofnp+LFi2vo0KFq1apVpvye6V13HnZ9OnXqlIoVKyZXV1fVr19fUvqv3fSuBY/qUda6KlWq6MqVK6pbt66+/vrrez7OEeaGWXF88+bNU+XKleXp6amcOXOqWLFiGjRokKT7Pwfe63n2fs93f389PbP6KK9xatasme7n5/S63++VkWv1Qec8I9fcqFGj9Mwzz8jDw0O5c+dWz549b3vMli1bbHJd+W8PuxY/7OtuZvp2zK5jc3NzU6dOnXTo0CFNnDhRK1euVMmSJRUREaFTp06ZzoONevnll7Vhwwbt3r1bQUFBOnbsmOkko/r166datWqpZcuWd/zDL1vwwgsvqHnz5urZs6dSU1NN5wAAAAAAAAAA8GDWbBITE2PNyOF++uknqyRr1apVM3Sc/v37W93d3a3z5s2znj9/3rpr1y5rpUqVrH5+ftaTJ0/eetyBAweskqxTp07N8Pf27dvXKskaERFhnThxorVFixbWH3/88Y6WK1euWH18fKzdunW77f6VK1dafXx8rAMHDnzg71OvXj2rJOu5c+fuOP769eut/8fefUdFcf3vA3+W3kTAgopiwYItxo5GbNHEho1morFERdQoxoZYERtWsHfNR6MiqBGxRewlaOwNRTTWoEJAEBUE4f7+yE++QREX2N3Z8rzO4Zxkd3buM5f33DvJXmZSUlJEfHy8cHZ2Fubm5iIjIyNnuyFDhghzc3MRHR0t0tPTxc2bN0Xjxo1FsWLFxKNHj3K26927t7C1tc3V7vz58wUAkZCQkPOaq6urcHBw+Cijg4ODKF68+GePRQghwsLChL+/v0hKShKJiYnCyclJlChRIlcb+vr64u+//871ue+//17s2bMn59/Hjh0rjI2NxY4dO8SLFy/ExIkThZ6enjh//nyuPvrc7ygvbm5uws3NTa5tdUlB++XVq1fC0tJSzJ07V6SlpYlnz56Jnj175tRUXvX0qd/b48ePBQCxdOnSj7b93Hkwa9Ysoa+vL8LDw8WbN2/ExYsXha2trWjdunWh+qEoY4e8223btk0AEJcvXxZCCJGRkSFcXV1FeHh4rizynrvyjgWFVdSx7s2bN6JRo0YCgAAgatWqJebOnSsSExM/2lYd66YgY6Au1UpB5311U5j8QUFBAoCYM2eOSExMFElJSWL16tWid+/eQgj55sAP6/tz8528tVrUaxx552d5yTuPf+5c/VyfF+S4ZTKZWLhwoXjx4oV48+aNWL58ea7zSwihVvPRh4oyFhf2ultXajqvcd7Hx0dcv379oz5h7eZPm66z09PTxerVq0WZMmWEhYWF8PX1FUlJSVLHIjX1119/CUdHR1GpUiURHR0tdRxJPX/+XNjZ2QkXFxeRnZ0tdZyPxMTECENDQ7F+/XqpoxARERERERERERERfU6o2i7+vHDhggAg2rVrJ/dn3rx5IywsLESvXr1yvf7nn38KALm+9P5wAVdBPvv+i9K0tLR880yaNElUr15dvHz5Uu5j+FB+iz//2/77L3nv3r2b89qQIUM++qL6/PnzAoCYPn16zmuqXPz5odmzZwsAIj4+XgghxOHDhwUAMXPmzJxtUlJSRLVq1cS7d++EEEKkpaUJMzOzXL+rN2/eCGNjYzFs2DAhhPy/o7xo05fSilTQfrlx44YAIPbu3Zvn+/kt4vvw95bfgoXPnQeNGzcWTZo0ybU/Ly8voaenJ96+fSv38bxX2LGjIGPMfxf0ZWZmiu+++04cOHDgoywFWdAnz1hQWIoY6zIyMsTixYuFo6NjziLQ0qVLi+PHj+faTh3rRt4xUNdqRdcWf2ZkZAgrKyvRpk2bXK+/e/dOBAcH5/mZD+fAD+tbnvlOnlpVxDWOPPOzvAo7j394rn6uzwtyzpmZmYn27dvn2u7DxdVCqNd89KGijMWFue7Oi7bWtIODQ87c9N+f/BZ/snbzpo3X2a9evRLBwcHC1tY2ZxHof//bjei9xMRE4ezsLKytrcWJEyekjiOpEydOCAMDAxEUFCR1lDwNGzZMlCtXTrx+/VrqKERERERERERERERE+QlV28e+W1hYAADevHkj92du3ryJV69eoVGjRrleb9y4MYyMjPJ9bG1RPpuXXbt2ITQ0FL///juKFStWoM8WhpGREQAgMzMz3+0aNWoEMzOzzz46WFUMDQ0B/Ps4SQBo27Ytqlevjg0bNkAIAQAICQlBr169oK+vDwCIiYnBmzdvUKdOnZz9mJqaokyZMmpzXARUqVIFpUuXRp8+feDv748HDx4ovc28zoP09PScWnovKysLhoaGOTVVFPKOHYUZY7KysvD999+jdOnSOY/wVhRFjQWKGusMDQ0xcuRI3Lp1C2fPnkX37t0RHx8Pd3d3vHjxokgZP0dVdaPrtaLtrl27huTkZHz77be5XtfX14ePj0+en/lwDvyQPPOdPLWqiGsceeZneRV2Hv/wXP1cn8t73Hfv3sWbN2/w9ddfF+g48qPq+aioY3Fhrrvzos01Xbx4cQghcn4+dV7nhbWr3czNzeHj44O7d+9i8uTJWLNmDezt7TFhwgSkpKRIHY/UiI2NDSIjI9G+fXt88803CAkJkTqSZFq2bInp06dj/Pjx+OOPP6SO8xF/f3+8evUKwcHBUkchIiIiIiIiIiIiIsqX2i7+rFSpEkxMTHDnzh25P5OcnAzg/77A/i8rKyukpqYq5bMfCgkJQWBgII4fP45KlSrJ/TlVMTY2RkJCgiRt79u3D61bt0apUqVgbGyM8ePH53pfJpPB29sbf/31F44cOQIA2LRpEwYOHJizzevXrwEAkydPhkwmy/l5+PBhkRctkOKYmpri6NGjaNGiBWbNmoUqVaqgV69eSEtLU2mOTp064eLFiwgPD0daWhouXLiA3bt3o0uXLgpZsCDv2FGYMeann35CbGwsVq1ahejo6CJn/VBRxwJljXVNmzbFb7/9hqFDhyIhIQHHjh1T2L7lpYy60eVa0QUvX74E8O/v6FM+Nwd+SJ75Tp5aVcQ1jjzzs7wUNY9/rs/lPe4nT54AAEqVKiX/QRSCsuYjRYzFhbnuBnS7poODg3MtYi0I1q52srCwgK+vLx4+fIhJkyZh9erVcHBwgL+/f87vnMjY2BghISEYOXIkvv/+e8ydO1fqSJLx8/NDx44d0atXLyQmJkodJ5dSpUph9OjRCAwMRHx8vNRxiIiIiIiIiIiIiIg+SW0XfxobG+Pbb7/FP//8gzNnznxyu6SkJAwaNAjA/32BmtcXvsnJyShfvvwn91OUz/7X0qVL8euvv+Lo0aMoV66cXJ9RpczMzAIdT1GdPHkSQUFBAIBHjx6hR48eKFOmDM6dO4eUlJQ8v+zq378/TExMsG7dOsTExMDS0hIVK1bMef/9F9xBQUG57sAkhEBUVJRKjovkU7t2bURERCAuLg6+vr7Yvn07FixYoNIM/v7+aNu2Lfr37w9LS0v07NkTHh4eWLt2rUL2L+/YUZgxxsPDA5GRkbCyskLfvn3x7t07hWQGij4WKHKsc3V1zfPYfvjhBwBFvxNdYSiqbv47BupqreiK9+fBP//8k+f78s6B/yXPfCdPrSrqGudz87O8FDWPf67P5T1uExMTAMDbt2/lP4hCUMZ8pKixuDDX3azpwmPtardixYrB19cX9+7dw08//YSgoCA4ODhg7ty5Kv8jKFJPMpkM8+bNQ1BQECZOnAgfHx9kZ2dLHUvlZDIZNm7cCD09PfTr1++jOwxLbezYsbCwsMDs2bOljkJERERERERERERE9Elqu/gT+PeLRmNjY4wePfqTX5TduHEDBgYGAIA6derAwsICFy5cyLXNuXPnkJGRgYYNG36yraJ8FgCEEPD19cX169exe/fuPO/Uow6OHz8OIQScnJxyXjMwMPjs4+IL6+LFizA3NwcAXL9+HZmZmRg2bBiqVKkCExMTyGSyjz5jbW0NT09P7N69GwsWLMDgwYNzvV+hQgWYmJjgypUrSslMihEXF5dzB8JSpUphzpw5aNCggVLuSpifmzdv4t69e0hISEBmZiYePXqEFStWwNraWiH7l3fsKMwY06ZNG5QsWRJr1qzBxYsXMXPmzFzvF+XczWsskIcyxrq3b9/mWRcxMTEAgC+++KLIbRSUourmv2OgrtWKrqlUqRJsbGxw6NChPN+Xdw78L3nmO3lqtajXOO99bn6Wl6Lm8c/1eUHOOT09PZw4caJIeT5HkfORMsbigl53s6b/9fTpUwwYMKBAn9Hl2tUlNjY28Pf3x7179zBw4EAEBASgUqVKmDt3LtLT06WOR2rAx8cHoaGhWLNmDdzc3HRycbCNjQ1CQkIQGRmJhQsXSh0nF3Nzc0ydOhUrV67E/fv3pY5DRERERERERERERJQntV78+eWXX2LLli24ceMGnJ2dsX//fqSkpCAzMxP379/H2rVrMXDgQBgaGgL49+43Y8aMwa5du/Drr7/i5cuXuH79OoYOHYqyZctiyJAhn2yrKJ8FgOjoaMybNw9r166FoaFhrkdZymSyXHc7PHDgACwtLTFr1izFdFQ+srOz8eLFC7x79w7Xrl3DqFGjYG9vj/79++dsU7VqVSQlJWH37t3IzMxEQkICHj58+NG+bGxsEBcXhwcPHiA1NTXfhUSZmZl4/vw5jh8/nrPwyd7eHgBw+PBhpKenIzY2FufOncvz80OHDsXbt2+xd+9euLi45HrPxMQEAwYMwLZt27BixQq8fPkSWVlZePLkCZ4+fVrQLiIliYuLg7e3N27fvo2MjAxcvnwZDx8+zFlAVpB6KoqffvoJ9vb2ePXqlVL2L+/YUZQxpmvXrujfvz9mzZqFixcv5rwu77kLyDcWyENZY12PHj0QGhqK5ORkpKSkIDw8HBMmTEC3bt1yLf7UlLrJawzUtVrRNcbGxpg4cSJOnjyJkSNH4u+//0Z2djZSU1MRHR0t1xz4YX3r6+t/dr6Tp1aLeo3zX/nNz/JS1Dz+uT6X97hLlSoFV1dX7NixA+vXr8fLly9x7do1rFmzplDH9ymKnI+UMRYX9Lpb12taCIG0tDTs3LkTlpaWcn8O0O3a1UUlS5ZEYGAg7t69C09PT0ybNg01atTAhg0bFHqnbtJMrq6uOHDgAI4dO4Zvv/0WL168kDqSyjk5OWHmzJnw8/PD6dOnpY6Ty+DBg1GlShVMmzZN6ihERERERERERERERHkTKrJ9+3ZR2OYePXokxo4dK+rWrSssLCyEvr6+sLKyEvXr1xcDBw4UZ86cydk2OztbzJ8/X1SrVk0YGhoKa2tr0aNHDxETE5OzzcKFC4Wtra0AIMzNzUXPnj3l/uzcuXOFqampACAqxctWWgAAIABJREFUVKggNm/eLIQQ4vr16wLAJ3/mz5+fs4/9+/eLYsWKiZkzZ37ymM+ePStq164t9PT0BABRpkwZMWvWLLF8+XJhZmYmAIhq1aqJe/fuiTVr1ghLS0sBQFSsWFHcuXNHCCHEkCFDhKGhobCzsxMGBgbC0tJSdO/eXdy7dy9XW4mJiaJNmzbCxMREVK5cWYwYMUKMGzdOABBVq1YVjx49EkIIcenSJVGxYkVhamoqWrRoIVauXCkcHBzyPW4AYteuXTlt+fr6ChsbG2FlZSXc3d3FsmXLBADh4OCQ08579evXF35+fnn2z9u3b4Wvr6+wt7cXBgYGolSpUsLV1VXcvHnzk78jebm5uQk3N7cCfUYXFLRfHjx4IJo3by6sra2Fvr6+KFeunJg0aZJ49+6dEOLjeho9enSev7elS5eKMmXKCADCzMxMdO3atUDnwdGjR0WJEiVy1aShoaGoWbOm2LlzZ4H6oChjh7zb7dy5U1hbWwsAolKlSiI+Pl68fPlSVKhQQQAQFhYWYtOmTUII+c9deccCeSh6rBNCiEOHDglPT0/h4OAgjI2NhZGRkahRo4bw9/cX6enpubZVp7rZtWtXgcdAXaqVosz76qCw+ZctWybq1q0rTExMhImJiahfv75Yvny5EOLzc+CH9f3s2bN85zsh5B/jinKN86H85md55XdcBTlXP9fn8p5zqampYtCgQaJEiRLCwsJCtGjRQkydOlUAEOXLlxdXr15Vq/lIGWPxewW57tb2mpZ3nJ88ebIQQrB25cDrbCEeP34svLy8hKGhoahRo4YIDQ0V2dnZUsciid24cUNUqFBB1KlTRzx58kTqOCqXnZ0tunTpIsqXLy8SEhKkjpNLSEiI0NPTE5cvX5Y6ChERERERERERERHRh0JlQgjxyZWhChQaGgpPT0+oqDkC4O3tjbCwMCQmJkodpVA6d+6MZcuWoXLlyipt193dHQAQFham0nbVnab2y4oVKxAbG4ugoKCc1zIyMjBhwgSsWLECL168gKmpqYQJlU/TxwIp6GrdKLJWNH3e15T8UtSqVPOzptPVcaWgWNPqR5G/E029nlSGBw8eYM6cOVi/fj1q1qyJqVOn5vQP6aa4uDh07NgRKSkp+P3331GjRg2pI6lUUlIS6tevj7p16yIiIgIymUzqSAD+vdNz48aNUa5cOezZs0fqOERERERERERERERE/xWm1o99p6LLysqSOoLc/vv45mvXrsHExIRfwlORPHv2DCNHjsTAgQNzvW5kZAR7e3tkZmYq7bHh6kaTxgKp6XrdsFY0h6pqlfNz0en6uCIv1rT6Ye0qT6VKlbB69WpcvXoVNWvWhIeHB7766iucOHFC6mgkkXLlyuH48eMoX748mjdvjqioKKkjqZSNjQ3CwsJw6NAhLFq0SOo4OWQyGWbNmoWIiAgcP35c6jhERERERERERERERLlw8SepDV9fX8TGxuLOnTsYMGAAZsyYIXUk0nCmpqYwNDTE+vXr8fz5c2RmZiIuLg7r1q3D1KlT0atXL8TFxUEmk332p1evXlIfjtLcvn1b5/vgv+SpG0tLS6ljEqmsVuWZnzmO5I/zkXzUqabpX5wTla927doIDQ1FVFQUjI2N0bp1a7Rv3x6XLl2SOhpJwNraGocOHYKTkxPat2+PgwcPSh1JpZo0aYKAgAD4+fmp1eLXb7/9Fl9//TUmT54sdRQiIiIiIiIiIiIioly4+FNLTZw4ERs3bkRKSgoqV66MHTt2SB3ps8zMzODo6Ih27drB398ftWrVkjoSabjixYvj0KFDuHHjBqpXrw5TU1PUqlULGzduRGBgIP73v//B0dERQojP/oSEhEh9OIUiz1ig7X1QUPLUjTbSxHlD16mqVuWZnzmO5I/zkXzUqabpX7o6J0rByckJR48eRWRkJF68eIFGjRrBw8MDsbGxUkcjFTMzM0N4eDg8PT3RrVs3rR738zJ+/Hi0adMGvXr1QlJSktRxcsyZMwd//PEH9u7dK3UUIiIiIiIiIiIiIqIcMiGEUEVDoaGh8PT0hIqaIyo0d3d3AEBYWJjESdQL+4WICkLT531Nz09EpI54PSkfIQT27t2LSZMm4fbt2+jVqxcCAgJQqVIlqaORCgkh4OvriwULFmDBggUYPXq01JFUJj4+HvXr10ezZs3U6g+SXF1dERsbiytXrkBPj39LTURERERERERERESSC+P/rSYiIiIiIiJSEzKZDC4uLrhy5Qq2bNmCM2fOoEaNGhgyZAieP38udTxSEZlMhnnz5iEoKAhjx47FhAkTpI6kMqVLl8bWrVuxe/durFq1Suo4OWbPno1bt25h69atUkchIiIiIiIiIiIiIgLAx74TERERERERqR09PT24u7vj1q1bWLp0Kfbs2YOqVatiwoQJSElJkToeqYiPjw9++eUXLFy4EAMGDMC7d++kjqQSrVq1wsSJE/Hzzz/j8uXLUscBANSoUQN9+/bFlClT8PbtW6njEBERERERERERERFx8ScRERERERGRujIyMoKXlxfu3r2LyZMnY/Xq1XBwcMDcuXORnp4udTxSgb59+2LXrl3Yvn073NzckJaWJnUklfD390fz5s3h6emJ1NRUqeMAAAICAvD8+XOsXbtW6ihERERERERERERERFz8SURERERERKTuzM3N4evri3v37mHQoEGYPn06qlWrhjVr1ujM3SB1mYuLC44ePYrTp0+jU6dOOnH3Vz09PWzatAkvXryAl5eX1HEAAHZ2dhg6dCgCAgLUZkEqEREREREREREREekuA1U36O7uruomiQrk7NmzcHJykjqGWjp79izPYSKSy5MnT6SOoBAc84iIFIfX2YphY2ODwMBAjBgxAjNmzMBPP/2ERYsWYebMmXB1dYVMJpM6IimJk5MTTpw4gQ4dOsDZ2RkHDx5EuXLlpI6lVHZ2dti0aRM6d+6Mjh07om/fvlJHgp+fH9avX4/g4GBMmTJF6jhEREREREREREREpMN4508N8eTJE+zYsUPqGESkwzgOERFJa8eOHVqzsJqIis7Ozg6rVq1CdHQ0GjZsCE9PTzg5OeH48eNSRyMlql27Nk6dOoW3b9+iRYsWiI2NlTqS0nXs2BE///wzhg0bhlu3bkkdByVLlsSYMWMwf/58xMfHSx2HiIiIiIiIiIiIiHSYTAghVNFQaGgoPD09oaLmtA77T3Xe3+UtLCxM4iTqhf1CHIeoIDS9XjQ9P2knmUyG7du3w8PDQ+ooRIXC60nlunnzJqZPn46wsDC0a9cO8+fPx5dffil1LFKSxMREdOnSBQ8ePMCBAwe0/nedmZmJVq1aITU1FX/++SdMTU0lzfP69WtUrVoVvXv3xoIFCyTNQkREREREREREREQ6K4x3/iQiIiIiIiLScLVr10ZoaCgiIyPx4sULNGzYEB4eHrh//77U0UgJSpQogcjISHzxxRdwdnbG4cOHpY6kVIaGhggJCUFcXBzGjBkjdRyYm5tj4sSJWL58OR49eiR1HCIiIiIiIiIiIiLSUVz8SURERERERKQl2rVrh/PnzyMkJASXL1+Go6MjhgwZgoSEBKmjkYJZWFggIiICnTp1QpcuXbBjxw6pIymVvb09Vq1ahVWrVqnFsXp7e8POzg4BAQFSRyEiIiIiIiIiIiIiHcXFn0RERERERERaRCaTwd3dHdHR0Vi6dCnCw8Ph4OAAf39/pKWlSR2PFMjIyAhbt27FgAED0KtXL6xZs0bqSErl7u4OLy8vDB48GA8fPpQ0i6GhIaZNm4ZffvkFMTExkmYhIiIiIiIiIiIiIt3ExZ9EREREREREWsjQ0BBeXl64e/cuJk2ahEWLFqFatWpYs2YNsrKypI5HCqKvr4+VK1di1qxZ8Pb2hr+/v9SRlCo4OBj29vbw8PBAZmampFl69+6N2rVrY9q0aZLmICIiIiIiIiIiIiLdxMWfRERERERERFrMwsICvr6+uHfvHlxdXTF8+HDUrVsXYWFhUkcjBfL19cWyZcswY8YMjBgxAtnZ2VJHUgoTExNs3boV169fx8yZMyXNoqenh2nTpiE0NBRXrlyRNAsRERERERERERER6R6NXfy5f/9+FC9eHBEREVJHISI1xDGCiKjgOHYSEWm3UqVKYfHixbh58ybq1KkDT09PNGvWDKdOnZI6GinIsGHDsGPHDqxbtw4//PCD5HfGVJbatWtj/vz5mDlzJo4ePSpplh49eqBx48aYOnWqpDmIiIiIiIiIiIiISPdo7OJPIYTUEYhIjXGMICIqOI6dRES6oXr16ggNDcXZs2dhYmKCli1bon379rhx44bU0UgBevTogYiICERERKBr1654/fq11JGUYvjw4ejatSv69u2LxMREyXLIZDJMnz4dERERiIqKkiwHEREREREREREREekejV382blzZ6SkpMDFxUXqKEhLS0Pz5s2ljiEpVfQB+1kxUlNT8fLlS6ljKB3HCFI0jnOaKy4uTuoIGoNjJ+kCjudE/6dJkyY4duwYIiMjkZCQgPr162PIkCF4+vSp1NGoiNq1a4ejR4/i4sWL+Oabb5CcnCx1JKXYsGED9PX10a9fP0n/iKVDhw5o1aoVpkyZIlkGIiIiIiIiIiIiItI9Grv4U52sX78e8fHxUseQlCr6gP2sGNHR0bC1tYWrqyt+++03pKenSx1J67F2tQPHOc3Vr18/VK1aFTNmzMDdu3eljkNy4vlAysLxnOhj7dq1w6VLl7B161YcOnQIVatWxYQJE5CSkiJ1NCqCRo0a4dSpU3j8+DFatGihlX8QY21tjV9//RUHDx7EypUrJc0yc+ZMHDlyRPLH0BMRERERERERERGR7tDIxZ+nT5+Gvb09ZDIZli1bBgBYsWIFzM3NYWZmhvDwcHTs2BGWlpYoX748tm3blvPZJUuWwMTEBKVLl4a3tzfKli0LExMTNG/eHOfOncvZbuTIkTAyMkKZMmVyXhs+fDjMzc0hk8nwzz//AABGjRqFMWPG4N69e5DJZKhatSoA4ODBg7C0tMSsWbNU0SUFJoTAokWLULNmTRgbG8Pa2hrdu3fH7du3c7YpSh+wn9Vbeno6wsPD4erqihIlSqBfv36IjIxEVlaW1NEUgmMEARzn6P9kZWXh3r17CAgIQLVq1dCgQQMEBwdr5QKIouDYSeqK4zmRaujp6cHd3R3R0dGYOnUqVq9ejWrVqmH58uXIzMyUOh4VUo0aNXDq1ClkZGSgbdu2ePTokdSRFM7Z2Rl+fn4YM2YMrl69KlmOFi1aoH379vDz85P0LqREREREREREREREpEOEimzfvl0osrnHjx8LAGLp0qU5r02aNEkAEEeOHBEpKSkiPj5eODs7C3Nzc5GRkZGz3ZAhQ4S5ubmIjo4W6enp4ubNm6Jx48aiWLFi4tGjRznb9e7dW9ja2uZqd/78+QKASEhIyHnN1dVVODg45Npu7969olixYiIgIEAhx6vo/ps6daowMjISmzdvFsnJyeLatWuiQYMGomTJkuLZs2c52xWlDzSxn4UQws3NTbi5uSlsf+rm7NmzAkCuHwMDAwFAFC9eXHh5eYlTp06J7OzsXJ/TtH7RtTFCFRQ9DikbxzlpqVO9tGnTJteYJ5PJhKGhoZDJZKJJkyYiODhYxMfH5/qMOuVXJY6d6g2A2L59u9QxVI7jufbQtOtJXZeYmChGjx4tjI2NRY0aNcTu3buljkRF8OzZM1GvXj1hb28vYmJipI6jcJmZmeKrr74StWrVEq9fv5Ysx/nz54VMJhN79+6VLAMRERERERERERER6YxQjbzz5+c0b94clpaWKFWqFHr16oXXr19/dHcLAwODnLsH1apVCytWrEBqaio2btyokAydO3fGy5cvMWXKFIXsT5HS0tKwaNEi9OzZE3369EHx4sVRt25drFq1Cv/88w/WrFmjsLZ0uZ81ybt37wAAKSkp+OWXX+Ds7IyyZcvCx8cHFy9elDid4nGM0H4c5yg/QghkZmZCCIGLFy9izJgxKFOmDNq2bYtNmzbh1atXUkdUSxw7SQocz4mkY2Njg4ULF+LOnTto0qQJevTogWbNmuGPP/6QOhoVgq2tLY4fPw47Ozu0bNkSV65ckTqSQhkYGGDbtm149uwZxo4dK1mORo0aoWvXrvDz80N2drZkOYiIiIiIiIiIiIhINxhIHUDZjIyMAOCzj6lr1KgRzMzMcj0+UlvdvHkTr169QqNGjXK93rhxYxgZGeV6vKWiaUo/P336FGFhYVLHUIrY2Nh838/IyAAAPH/+HCtXrsSSJUtQo0YNGBoaokKFCqqIqFIcI7QTxzn1oQ5jaXJy8iffy8rKyvnnkydP4vjx4xgyZAgaNmwI4N+xwdDQUOkZNQ3HTlIVjudE0rO3t8emTZswYsQIjB07Fi1atICbmxsCAwNRpUoVqeNRAVhZWSEyMhI9evRAmzZtsG/fPjRv3lzqWApToUIFrFmzBm5ubmjVqhU8PT0lyTFz5kzUq1cPO3fuhLu7uyQZiIiIiIiIiIiIiEg3aP3iz4IwNjZGQkKC1DGU7v0iGAsLi4/es7KyQmpqqlLb14R+vnTpEjw8PKSOIbn3i3piYmIAAHFxcfjjjz+06gvCgtCE2qV/cZxTH+owllpbW8u13fuFoOnp6Thz5gwAYMqUKZg+fTqMjY2Vlk/b8XygouB4TqQ+GjdujBMnTiAiIgKjR49GzZo14e3tjenTp8PKykrqeCQnc3NzRERE4Pvvv8c333yDXbt24ZtvvpE6lsK4urpi0KBB8Pb2hpOTEypWrKjyDHXq1IGnpycmT56MHj16wMCA/+uNiIiIiIiIiIiIiJRDKx/7XhiZmZlITk5G+fLlpY6idO+/mMvry3Jl94Gm9HPnzp0hhNDKn7Nnz8rVB+/v6ubg4IBp06bh22+/Rdu2bXV24aem1C79i+Oc+pB6zBNC4Msvv/xsTn19fejp6cHQ0BCdOnXCzz//DAAIDAzkws8i4PlARcXxnEj9uLi4IDo6GkuXLkVISAgcHBwwd+5cvH37VupoJCdjY2OEhobC3d0dLi4u2Llzp9SRFGrx4sUoW7Ysfvjhh1x3eVel6dOn46+//sKWLVskaZ+IiIiIiIiIiIiIdAMXf/5/x48fhxACTk5OOa8ZGBh89nGmmqhOnTqwsLDAhQsXcr1+7tw5ZGRk5DzqFlB8H+hSP2ui9ws+S5UqBW9vb5w6dQp3796Fv78/ihUrJnE6abF2NQvHOZKHTCbLWfTZsmVLbNy4EYmJidi3b1+u3x8VHs8HKiqO50TqydDQEF5eXrh9+zYGDx4Mf39/fPHFFwgLC4MQQup4JAd9fX1s2LABQ4cOhaenJzZu3Ch1JIUxMzPDtm3b8Oeff2L27NmSZKhWrRr69euHadOmISMjQ5IMRERERERERERERKT9dHbxZ3Z2Nl68eIF3797h2rVrGDVqFOzt7dG/f/+cbapWrYqkpCTs3r0bmZmZSEhIwMOHDz/al42NDeLi4vDgwQOkpqYiMzMTBw4cgKWlJWbNmqXCo5KPiYkJxowZg127duHXX3/Fy5cvcf36dQwdOhRly5bFkCFDcrYtSh8Aut3PmsLQ0BDAv49T9fT0RGRkJJ49e4bFixejRYsWEqeTDmtXs3Gco0+RyWQwNDSETCZD48aNsXDhQsTFxeHo0aPo27evzi90LyqeD6RoHM+J1Ju1tTUCAwNx584dNG3aFJ6enmjevDnOnDkjdTSSg0wmQ3BwMCZPnoyBAwciODhY6kgKU69ePcyZMwcBAQFyP/1C0aZOnYpnz55h/fr1krRPRERERERERERERNpPIxd/Llu2DI0bNwYA+Pr6olu3blixYgWCgoIAAF988QX++usvrF27FmPGjAEAdOjQAbGxsTn7SE9PR926dWFqagpnZ2dUr14dx44dy/Vo12HDhqFNmzb47rvvUKNGDcyYMQOmpqYAgGbNmuHx48cAgKFDh6J06dKoVasWOnXqhKSkJJX0Q1FMmzYNs2fPRkBAAEqWLIlWrVqhUqVKOH78OMzNzXO2K2of6Ho/qztTU1N4eHhg3759ePHiBTZt2oR27dpBT08jh4YcHCMI4DhHeatduzZmz56Nhw8f4ty5c/Dx8YGtra3UsdQCx05SVxzPidRfhQoVsGnTJpw7dw5GRkZwdnaGh4cH/vrrL6mjkRz8/f0xZ84c/Pzzz5gwYYLUcRRm1KhRaN++Pfr06YPU1FSVt29vbw8vLy/MmDEDb968UXn7RERERERERERERKT9ZEJFz2QLDQ2Fp6enWjwCztvbG2FhYUhMTJQ6itzUqf/kpYn9DADu7u4AgLCwMImTKMfly5cREBCA7777Di4uLjkLFj5H2/vlvzS1dpVNE8chZWOtfJo61cv7RVjfffcdHB0d5fqMOuXXFDwflE8mk2H79u3w8PCQOorWYf2qhi5dT+q6iIgIjB49Go8ePYK3tzemT58OKysrqWPRZ6xatQrDhw/HuHHjMGfOHMhkMqkjFVlcXBy++OIL9OjRA2vXrlV5+8+ePUPVqlUxffr0nD+eISIiIiIiIiIiIiJSkDDNvr1fEWRlZUkdQSewn9VP/fr18dtvv8HDw0PuhZ+6iLVL8mKtqL+VK1di+vTpci/8pMLj+UCajPVLpDguLi6Ijo7G0qVLERISAgcHB8ydOxdv376VOhrlw9vbG5s3b8aiRYswbNgwZGdnSx2pyMqVK4d169Zh3bp1kiw8L1OmDH766SfMnTsXr169Unn7RERERERERERERKTddHbxJxEREREREREph6GhIby8vBATE4PBgwfD398fdevWRVhYGO+srca+//577Nq1C7/88gv69OmDzMxMqSMVWffu3fHjjz9i2LBhiIuLU3n748aNQ3p6OpYtW6bytomIiIiIiIiIiIhIu+nc4s+JEydi48aNSElJQeXKlbFjxw6pI2kl9jNpKtYuyYu1QvR/eD6QJmP9EimXlZUVAgMDER0djYYNG8LT0xOtWrXChQsXpI5Gn9ClSxccOHAAe/fuRc+ePZGWliZ1pCJbsmQJbGxs0L9/f5UvPi5RogRGjBiBBQsW4OXLlyptm4iIiIiIiIiIiIi0m84t/pw9ezbevn0LIQTu378PNzc3qSNpJfYzaSrWLsmLtUL0f3g+kCZj/RKpRuXKlbFt2zacPXsWWVlZaNq0Kfr37y/JnRjp81q3bo0jR44gKioKHTt2RGpqqtSRisTc3BxbtmzB8ePHsWTJEpW3P27cOGRlZUnSNhERERERERERERFpL51b/ElERERERERE0mjSpAnOnDmD3bt34+TJk6hWrRomTJiAV69eSR2NPtC4cWOcOHECsbGxaNu2LRITE6WOVCSNGjXC5MmT4evri2vXrqm0bSsrK4wcORILFy7EixcvVNo2EREREREREREREWkvLv4kIiIiIiIiIpVycXHB7du3MXv2bKxcuRKOjo5Ys2YNsrOzpY5G/1G7dm2cPn0aSUlJaNmypcbfqXXy5MlwcnLC999/j/T0dJW2PXr0aMhkMt79k4iIiIiIiIiIiIgUhos/iYiIiIiIiEjljIyM4OPjg3v37sHV1RXDhg1D06ZNcfr0aamj0X9UrlwZx44dw7t379CiRQvcu3dP6kiFpqenh40bN+Lx48eYNGmSStsuXrw4Ro0ahaCgICQlJam0bSIiIiIiIiIiIiLSTlz8SURERERERESSKVmyJBYvXoxr166hZMmScHZ2houLC+7fvy91NPr/7O3tcfLkSVhaWqJNmzaIiYmROlKhVa5cGUuWLEFQUBAOHDig0rZHjRoFfX19BAcHq7RdIiIiIiIiIiIiItJOXPxJRERERERERJKrVasWDhw4gD179uD27duoXbs2JkyYgJcvX0odjQDY2tri2LFjKF++PFq1aoXr169LHanQ+vXrB09PTwwaNAiJiYkqa9fS0hJjxoxBUFAQEhISVNYuEREREREREREREWknmRBCqKKh0NBQeHp6qqIpoiJzc3NDWFiY1DHUiru7O3bs2CF1DCLSMCq6zFA4XrcQESkHr7NJXpmZmVixYgX8/f1hamoKf39/DBw4EPr6+lJH03mvX79G9+7dcfHiRRw8eBBNmjSROlKhJCcno169emjYsCF27dqlsnZfv36NKlWqYODAgZg9e7bK2iUiIiIiIiIiIiIirRNmoOoWt2/fruomtZqnpydGjRqFZs2aSR1FawQFBUkdQW05OTnh559/ljoGqRmOQ5SXqKgorXicJa9bSN29v27h/EyagNfZVBCGhobw8fHBDz/8gOnTp2P48OFYvXo1Fi1ahFatWkkdT6eZm5tjz5496NGjB7755hscOHBAI/9bwMrKCps3b0bbtm2xceNGDBgwQCXtmpubY8yYMQgICMCoUaNQunRplbRLRERERERERERERNpH5Xf+1NQ7gKkrmUyG7du3w8PDQ+ooWsPd3R0AeEeiD7Bf6FM4DlFeNH3e1/T8pDs4P5MmYb1SUdy+fRtjx47Fvn370KVLFwQHB8PBwUHqWDotIyMDnp6eiIyMxJ49e9C2bVupIxXKuHHjsHLlSly6dAnVq1dXSZuvX7+Gg4MD+vbti3nz5qmkTSIiIiIiIiIiIiLSOmF6UicgIiIiIiIiIsqPo6Mj9u7di8jISDx48AA1a9aEj48PUlJSpI6ms4yMjBAaGoqOHTvCxcUFkZGRUkcqlJkzZ6JatWro3bs3MjMzVdKmubk5xo0bh2XLliEuLk4lbRIRERERERERERGR9uHiTyIiIiIiIiLSCO3atcPly5exbNkybNu2DQ4ODli8eDHevXsndTSdZGhoiJCQELi7u8PFxQXh4eFSRyowY2NjbN26FTdv3sSsWbNU1u7w4cNhY2ODBQsWqKxNIiIiIiIiIiIiItIuXPxJRERERERERBrDwMAAXl5euH10T7OSAAAgAElEQVT7Nvr06YNx48ahYcOGOHr0qNTRdJK+vj42bNiA3r17w8PDA7t27ZI6UoHVrFkT8+bNw6xZsxAVFaWSNk1MTHIeOf/333+rpE0iIiIiIiIiIiIi0i5c/ElEREREREREGsfGxgbBwcG4fv06KlSogK+//hpubm64f/++1NF0jp6eHtatWwdvb294eHhg8+bNUkcqsOHDh6NDhw7o3bs3Xr58qZI2hwwZghIlSiAwMFAl7RERERERERERERGRduHiTyIiIiIiIiLSWDVq1MDevXtx+PBhxMTEwNHRET4+PkhNTZU6mk6RyWQIDg6Gj48PBgwYgI0bN0odqUBkMhnWr1+PN2/eYNSoUSpp08TEBH5+fli3bh3v/klEREREREREREREBaZxiz+9vb0hk8lyfvr06fPRNocPH4afnx+ys7PRo0cP2Nvbw8TEBHZ2dujWrRuuXbtW6Pazs7MRFBSE5s2bf/Tenj17MHfuXGRlZeV6fffu3bkylyxZstDtKwv7lXSNutUzqQfWBVH+eI6QplBGrc6cOTPXtef7nzp16uRsw1olktbXX3+NS5cuYenSpdiyZQscHR2xZs0aZGdnSx1NZ8hkMixcuBCTJ0/GwIEDsWzZMqkjFUjp0qWxceNG/PLLL9i+fbtK2hw0aBBKliyJefPmqaQ9IiIiIiIiIiIiItIeGrf4E/j30W4HDhxATEwM1q9fn+u9adOmYcmSJZg4cSKys7Nx6tQpbN26FUlJSTh9+jTS0tLQsmVLxMXFFbjd2NhYtGzZEqNHj8abN28+er9r164wMTHB119/jeTk5JzXu3XrhidPnuDkyZPo1KlTwQ9YRdivpCvUsZ5JeqwLovzxHCFNocxa/RzWKpH0DA0N4eXlhTt37sDNzQ3Dhg2Dk5MToqKipI6mU/z9/TFnzhyMHDkSwcHBUscpkI4dO8LLywve3t549OiR0tszNjbG+PHjsWbNGt79k4iIiIiIiIiIiIgKRCMXf5qamqJDhw6oXr06jI2Nc14PDAxESEgIQkNDUaxYMQBAs2bN0KJFC5iZmaFy5cqYNWsWUlJS8MsvvxSozatXr2LChAkYOnQovvzyy09u5+Pjg3r16qFTp0549+4dgH/vfGFnZwdnZ2dUq1at4AesIuxX0gXqWs8kLdYFUf54jpCmUGatAsDmzZshhMj1c+PGjVzbsFaJ1IONjQ0WL16M8+fPw9TUFF999RX69u2LZ8+eSR1NZ/j6+mLevHkYPXo0ZsyYIXWcAlm0aBHKlCmDvn37quTOsYMHD0aJEiWwYMECpbdFRERERERERERERNpDIxd/5uXu3buYMmUKpk+fDhMTEwCAgYEBIiIicm1XpUoVAMC9e/cKtP969eph586d6N27d66FkXnx9/fHlStXNO7uFnlhv5I2YT1TXlgXRPnjOUKaQtm1WhCsVSL1Ub9+fZw4cQLh4eE4deoUqlatCn9/f7x9+1bqaDph7NixWLFiBfz9/TFhwgSp48jNzMwMW7ZsQVRUlErGchMTE4wbNw6rVq1Syp2piYiIiIiIiIiIiEg7ac3izyVLlkAIga5du+a7XVpaGgDA0tJSaVmsra3RqlUrBAcHQwihtHZUgf1K2oT1THlhXRDlj+cIaQrWKhHlx8XFBdHR0ZgyZQoWLlyIOnXqICwsTOpYOsHb2xurV6/G/Pnz4evrK3UcuTVo0AD+/v6YOHEirl69qvT2hgwZghIlSmDhwoVKb4uIiIiIiIiIiIiItIPWLP7ct28fatSoATMzs3y3+/PPPwEALVq0UGqe+vXr4++//1bJFwTKxH4lbcJ6prywLojyx3OENIUqatXPzw/W1tYwMjJC5cqV0b17d5w/fz7PbVmrROrH1NQUvr6+uH37Npo1awZPT0+0a9cON27ckDqa1hs0aBB+/fVXLFq0CMOHD9eYhfHjx49H06ZN0adPH6Snpyu1LRMTk5w7pT59+lSpbRERERERERERERGRdtCKxZ+vX7/G/fv34eDg8Mltnj9/jpCQEPj4+KBZs2afvSNQUVWrVg0AcP36daW2o0zsV9ImrGfKC+uCKH88R0hTqKJW+/Xrhz179uDx48d49eoVtm3bhkePHqFVq1a4efPmR9uzVonUl52dHTZt2oSoqCi8evUKDRo0gI+PD5KTk6WOptW+++47bN26FWvXroW3tzeys7OljvRZ+vr62LRpEx49eoQpU6YovT1vb2/Y2Nhg0aJFSm+LiIiIiIiIiIiIiDSfViz+jI+PhxAi37v8NGvWDD4+PujevTsOHDgAQ0NDpWZ6n+X58+dKbUeZ2K+kTVjPlBfWBVH+eI6QplBFrVaoUAH169eHhYUFjIyM4OTkhI0bNyItLQ3Lly//aHvWKpH6a9q0Kf744w+sW7cOISEhcHBwwOLFi5GVlSV1NK3l7u6O3377DZs2bcIPP/yAd+/eSR3psypWrIigoCAsWrQIJ06cUGpbJiYmGDNmDFauXIn4+HiltkVEREREREREREREmk8rFn++f/SWsbHxJ7cpXbo0jh49iqVLl6J48eJKz2RqapormyZiv5I2YT1TXlgXRPnjOUKaQqparVu3LvT19XHnzp2P3mOtEmkGPT099O3bFzExMRg8eDDGjx+Pxo0b4+TJk1JH01qdO3fGb7/9ht9++w19+vRBZmam1JE+68cff0T37t0xYMAApKamKrWtYcOGwdLSEgsXLlRqO0RERERERERERESk+bRi8ef7L1bzuztHqVKlYGVlpapIyMjIAPB/2TQR+5W0CeuZ8sK6IMofzxHSFFLVanZ2NrKzs/NcdMpaJdIsVlZWCAwMxJUrV1CqVCm0bt0a3333HZ48eSJ1NK3UoUMHHDx4EPv374erqyvevn0rdaTPWrVqFV6/fo3x48crtR0TExOMHj0ay5cv590/iYiIiIiIiIiIiChfWrH4s3Tp0pDJZEhJSfnkNhEREbCzs1NZpvdZbG1tVdamorFfSZuwnikvrAui/PEcIU2hilr99ttvP3rt/PnzEEKgWbNmH73HWiXSTDVr1sTvv/+O8PBwXLhwAY6OjpgzZ45GLE7UNC1btsS+fftw4sQJuLm5qX0flypVCqtXr8bq1atx4MABpbY1dOhQmJubIygoSKntEBEREREREREREZFm04rFn2ZmZqhSpcon78hx9+5d2NrawtPT86P3evXqBVtbW1y6dEmhmd5nqVu3rkL3q0rsV9ImrGfKC+uCKH88R0hTqKJW//77b4SEhCA5ORmZmZmIiorCoEGDYG9vj6FDh360PWuVSLO5uLggOjoas2bNwpw5c1CnTh3s3btX6lhax9nZGYcOHcLp06fRs2dPtV8A2r17d/Tq1QuDBg1CUlKS0toxNzfHmDFjsHTpUiQkJCitHSIiIiIiIiIiIiLSbFqx+BMAOnfujJs3byItLe2j94QQn/xcRkYG4uPjER4enu/+z549ixYtWqBcuXI4d+4crl69irJly+Krr77CyZMnP9r+/PnzsLOzwxdffFHwg1Ej7FfSJqxnygvrgih/PEdIUyi7Vjt06IDJkyejfPnyMDMzg4eHB7766iucPXsWJUqU+Gh71iqR5jM0NISPjw9u3bqFZs2aoWvXrmjfvj1u3boldTSt0rRpUxw5cgRnz55Ft27d8hzH1cmKFSugp6eHkSNHKrWd4cOHw9zcHMHBwUpth4iIiIiIiIiIiIg0l9Ys/hwxYgSEENi5c+dH71WrVg3Pnz/H9u3bP3pvx44dcHZ2RsWKFfPdv5OTE06fPo24uDgIISCEwNOnT3HmzBm0bNky17aJiYk4cuQIfv75Z8hksqIdmMTYr6RNWM+UF9YFUf54jpCmUHatLliwAHfv3sWrV6+QmZmJx48fY82aNShbtuxH27JWibSLnZ0dNm3ahGPHjuH58+eoV68efHx8kJqaKnU0rdGgQQMcPnwYFy5cQPfu3dV6AaiVlRU2bNiArVu3IiwsTGntmJubY/To0ViyZAn++ecfpbVDRERERERERERERJpLIxd/pqWl4ffff0dsbCwyMjIAAFWrVkVAQAACAgLw6tUrufaTlZWF3bt3IzU1Fb169VJYPn9/f3z55Zc5d4EQQiAuLg6nT5/G3bt3FdaOorFfSdupcz2TdFgXRPnjOUKagrVKRMrWqlUrXLp0CcuWLcOWLVtQs2ZNbNq0Kd+7C5P86tevj8OHD+PixYtqfwfQ9u3bY9CgQRg2bBiePXumtHaGDx8OExMTLF68WGltEBEREREREREREZHm0sjFn0lJSejQoQOqV6+OH3/8Med1Pz8/uLu7o1evXkhJSfnsfo4fP46dO3fiwIEDMDMzU0i2RYsW4cqVK9i/fz8MDQ0BAOHh4bCzs4OzszP27dunkHaUgf1KukBd65mkxbogyh/PEdIUrFUiUjYDAwN4eXkhJiYGrq6uGDBgANq0aYPr169LHU0rfPnllzh8+DAuX76MDh064PXr11JH+qSgoCBYWVnBy8tLaW1YWFjAx8cHS5cuRXJystLaISIiIiIiIiIiIiLNJBMqukVFaGgoPD09VXJHjEOHDuHo0aMIDAxUelv/FR4ejujoaIwfPx76+voqaVMmk2H79u3w8PBQelu60q/u7u4AoNTHt2kibesXXalnVVDlOKRsrAvFUeW8rwyanl9ZeI6oH22bnxWFtaqeWK+kjS5evIgRI0bg/Pnz+PHHHzF79myUKFFC6lga7+rVq2jXrh1q1aqFffv2wcLCQupIeTpz5gxatWqFdevWoX///kpp4+XLl6hYsSLGjx8PPz8/pbRBRERERERERERERBopTCsXf+oSbVp0pS74pXTe2C/0KRyHKC+aPu9ren7SHZyfSZOwXklbCSGwefNmjBs3DllZWZgyZQpGjBgBPT2NfNiK2ni/ALRmzZrYv3+/2i4AHTNmDNatW4dr166hYsWKSmlj0qRJWL16NR48eKC2/UBEREREREREREREKhfGbyKIiIiIiIiIiApJJpOhb9++iImJQe/evTF27Fg0adIEUVFRUkfTaPXq1cPJkycRGxuLTp064dWrV1JHytPs2bNhb2+PH3/8UWl/ODR69Gi8ffsW69evV8r+iYiIiIiIiIiIiEgzcfEnEREREREREVERWVlZYfHixbh+/TpsbGzw1VdfoW/fvoiPj5c6msaqWbMmjh49itjYWHTs2BGpqalSR/qIsbEx/ve//+HUqVNYvny5UtooUaIEBg0ahAULFuDt27dKaYOIiIiIiIiIiIiINA8XfxIRERERERERKYijoyMOHTqE8PBwnDhxAjVq1MDixYvx7t07qaNppJo1a+LYsWO4d++e2i4AbdCgAfz8/ODr64s7d+4opY3x48fjn3/+waZNm5SyfyIiIiIiIiIiIiLSPFz8SURERERERESkYC4uLrh58yaGDBmC8ePHo2HDhjh58qTUsTSSo6Mjjh49ir/++kttF4BOmTIFtWvXRr9+/ZCVlaXw/ZctWxZ9+/ZFYGAgFxITEREREREREREREQDAQNUNhoaGqrpJrRcVFSV1BK3y5MkTlC9fXuoYaunJkyc8hylPHIfoQ9pSExzzSN09efIEAGuVFOvp06coW7aswvfL62zSRRYWFggMDMSPP/4IHx8ftG7dGr1798b8+fNRpkwZqeNpFEdHRxw7dgxt27ZFhw4dcODAAVhaWkodK4eBgQH+97//oWHDhpg3bx78/PwU3oavry82bNiA7du3o3fv3grfPxERERERERERERFpFpkQQqiiodDQUHh6eqqiKaIic3NzQ1hYmNQx1Iq7uzt27NghdQwi0jAqusxQOF63EBEpB6+zSddFRERg5MiRSEhIwNixYzFx4kQYGRlJHUujxMTEoG3btqhYsSIOHjyoVgtAAWD+/PmYNGkSoqKi0LBhQ4Xv/4cffsDFixdx48YN6OnxgT5EREREREREREREOixMZYs/iYiIiIiISP3dvHkTYWFh2Lt3Ly5dugQrKyu0a9cOXbp0Qbdu3VC8eHGpIxJptLS0NMydOxdz585F9erVsXz5crRo0ULqWBrlzp07aNu2LcqUKYPIyEhYW1tLHSlHdnY22rZti4SEBFy8eBEmJiYK3f+tW7dQp04dhIWFoWfPngrdNxERERERERERERFpFC7+JCIiIiIiorw9ePAAhw4dQkREBH7//XcIIdC0aVO4u7vDzc0NdnZ2Ukck0lh3797FyJEjcfDgQfTp0wfz58+Hra2t1LE0RmxsLNq0aYMyZcrg0KFDsLGxkTpSjvv376NevXr46aefMHv2bIXv383NDffu3cOlS5cgk8kUvn8iIiIiIiIiIiIi0ghc/ElERERERESfl5SUhCNHjiAiIgK7d+9GamoqatWqBXd3d7i4uCjl8cZEuuD9o+CTk5Ph7++P4cOHw8DAQOpYGuH9AlBbW1tERkaq1QLQVatWYfjw4Thx4oTC7+x65coVNGjQAPv370eHDh0Uum8iIiIiIiIiIiIi0hhc/ElEREREREQFk56ejtOnTyMiIgJhYWF4+vQpKleuDBcXF7i4uKB169ZcvEZUAG/evMG8efMQGBgIR0dHLF++HF999ZXUsTTCgwcP0KZNG9jY2KjVAlAhBDp37ow7d+7gypUrsLCwUOj+O3XqhOTkZPzxxx8K3S8RERERERERERERaQwu/iQiIiIiIqLCy87OxuXLlxEREYHQ0FDcunULJUqUQKdOneDi4oKOHTsqfNETkbaKjY3FyJEj8fvvv/NR8AXwfgGotbU1IiMjUaJECakjAQDi4uJQt25d/D/27jwuqur/H/hr2IZFWUQWNxTIFfmUgWYK5QIayojbqLmQfVxQU9G0XD9ImVv6UVBEcWnBTAUzYUhTtExx6RNKiaBEYipuICKgoGzn90c/+YaaDDBwB3g9Hw/+aObec15zOfeca/Pm3jFjxmD9+vUabfvMmTN4/fXX8dNPP+GNN97QaNtEREREREREREREVCew+JOIiIiIiIg0Jy0treyOoKdPn4ZcLkffvn2hUCgwaNAg2NraSh2RSOupVCrMmDEDOTk5CAwMxPTp06Grqyt1LK12+fJl9OnTB1ZWVoiNjYWFhYXUkQAAX331FXx9fXHw4EH0799fo2336tULcrkchw4d0mi7RERERERERERERFQnsPiTiIiIiIiIakZmZiYOHjyIyMhIxMbGori4GN27d4dCocDgwYPRvn17qSMSaa2/Pwq+Y8eO2LhxI3r06CF1LK125coV9OrVCzY2Njh8+DDMzc2ljgQAGDZsGOLj45GYmAhTU1ONtRsbG4t+/frhf//7H7p27aqxdomIiIiIiIiIiIioTmDxJxEREREREdW8/Px8HD16FJGRkVCpVLh//z46deoEhUIBb29v9OzZEzKZTOqYRFonNTUVM2bMwOHDhzF27FisWbMG1tbWUsfSWlevXsWbb74JS0tLHDlyRCvuAJqZmQknJycMGTIEYWFhGm27R48esLGxwbfffqvRdomIiIiIiIiIiIhI67H4k4iIiIiIiGpXSUkJTp8+jZiYGOzbtw+pqalo1aoVvLy84O3tjf79+8PAwEDqmERaRaVSYfr06cjNzeWj4CuQmpqKXr16oXXr1jh06BAaN24sdSRERERg1KhRGn/8e1RUFIYMGYLffvsNzs7OGmuXiIiIiIiIiIiIiLQeiz+JiIiIiIhIWklJSYiJiYFKpcKpU6dgbGyM3r17Q6lUwsfHB2ZmZlJHJNIKDx48wEcffYTg4GC8/PLLCA0N5eO+/8Hvv/+O3r17o02bNvj++++1ogBUqVTil19+QWJiosbyCCHw8ssvw9nZGTt37tRIm0RERERERERERERUJ7D4k4iIiIiIiLTH1atXcejQIahUKhw6dAhCCLz22mtQKpUYPnw4WrRoIXVEIsklJyfjvffew/Hjx+Hn54dly5ZpxePNtU1KSgp69+4NR0dHHDx4EI0aNZI0z927d+Hk5IThw4dj48aNGmt3165dGDduHJKTk9GuXTuNtUtEREREREREREREWo3Fn0RERERERKSd7t27h6NHj0KlUmH//v3Iy8tDp06doFQqoVAo4OLiInVEIkmpVCpMmzYN+fn5WLFiBSZNmgSZTCZ1LK1y6dIl9OrVC+3atcPBgwdhYmIiaZ6vv/4aY8eOxaFDh+Dp6amRNktKStCpUye4u7tj27ZtGmmTiIiIiIiIiIiIiLQeiz+JiIiIiIhI+z169AhxcXFQqVTYu3cvbt68CXt7eygUCigUCvTq1Qt6enpSxySqdTk5OQgICMDGjRvRo0cPhIaGonPnzlLH0irnz59Hnz598OqrryI6OhqGhoaS5hk2bBjOnTuHxMREjd2N9LPPPsOUKVOQmpqK1q1ba6RNIiIiIiIiIiIiItJqLP4kIiIiIiKiuqW0tBQJCQlQqVSIjIxEcnIyLC0tMWDAACgUCnh5eUn+eGei2paQkIBp06YhPj4e06ZNwyeffILGjRtLHUtr/Prrr/Dw8ICLiwuioqIkLQC9ffs2nJycMHbsWAQHB2ukzaKiIrRt2xaDBg3C+vXrNdImEREREREREREREWk1Fn8SERERERFR3ZaWllZWCHr69GnI5XL07dsXCoUCgwYNgq2trdQRiWpFaWkpvvrqK7z//vswNDTE8uXL4evrK3UsrZGQkAAPDw9069YN+/fvh1wulyxLeHg43n33Xfz444944403NNJmSEgIPvjgA6SlpaFZs2YaaZOIiIiIiIiIiIiItBaLP4mIiIiIiKj+uHv3Lg4cOIDIyEjExsaiuLgY3bt3h0KhwODBg9G+fXupIxLVuHv37mHBggXYunUrBg4ciPXr18Pe3l7qWFrh3Llz8PDwQPfu3fHtt99KWgA6ZMgQ/Pbbbzh//rxG7lb86NEjODg4wNfXFytXrtRAQiIiIiIiIiIiIiLSYiz+JCIiIiIiovopPz8fR48eRUxMDPbv34+MjAw4ODjA29sbSqUSPXv2hEwmkzomUY05fvw4pk2bhrS0NHz44YdYsGCBpMWO2uL06dPo378/PD09sXv3bujr60uS4+bNm+jcuTPGjx+PtWvXaqTNTz/9FEuXLsWff/4JS0tLjbRJRERERERERERERFqJxZ9ERERERERU/5WUlOD06dOIiYnBvn37kJqaCmtra/Tv3x9KpRL9+/eHgYGB1DGJNK6oqAihoaFYvHgxbG1tERISgv79+0sdS3KnTp3CW2+9hX79+mH37t3Q09OTJMdnn32GSZMm4aeffoKbm1u123v48CHatGmDGTNmICAgQAMJiYiIiIiIiIiIiEhLsfiTiIiIiIiIGp6kpCTExMRApVLh1KlTMDY2Ru/evaFUKuHj4wMzMzOpIxJp1I0bN7BgwQLs2LED3t7e2LRpE1q2bCl1LEnFxcXBy8sLXl5e+PrrryUrAB0wYADS0tKQkJAAIyOjarcXGBiIDRs24M8//0Tjxo01kJCIiIiIiIiIiIiItFCkjtQJiIiIiIiIiGqbk5MT5s2bh7i4OFy5cqXskcsTJ06EpaUl3NzcEBwcjPT0dImTEmlGixYtEB4ejujoaFy4cAGdO3dGcHAwSkpKpI4mGTc3Nxw4cAAHDhzA2LFjJTsWW7duxZ07d7BkyRKNtDdz5kwUFRVh8+bNGmmPiIiIiIiIiIiIiLQT7/xJRERERERE9P9lZ2fjyJEjUKlUiIqKQm5uLjp16gSlUgmFQgEXFxepIxJVW0FBAVatWoWVK1eiY8eO2LRpE7p37y51LMnExsZi0KBBGDVqFLZv3w4dndr/W+mtW7diypQpOH78OHr27Fnt9j788EPs3LkTaWlpkMvlGkhIRERERERERERERFqGj30nIiIiIiIiep5Hjx4hLi4OKpUKe/fuxc2bN2Fvbw+FQgGFQoE333wT+vr6UsckqrKLFy9i2rRpOH78OPz8/LB8+XKYm5tLHUsShw8fho+PD0aPHo2tW7fWegGoEAJeXl64evUqEhISYGhoWK32bty4AQcHB4SGhmLChAkaSklEREREREREREREWoTFn0REREREREQVKS0tRUJCAlQqFSIjI5GcnAxLS0sMGDAACoUCXl5eaNSokdQxiSpNCIGdO3dizpw50NHRwdq1a/H2229LHUsS33//PQYPHoyxY8di69atkMlktdr/1atX4ezsjOnTp2P58uXVbm/ChAk4efIkkpOTJbmbKRERERERERERERHVKBZ/EhEREREREVVWWlpaWSHo6dOnIZfL0bdvXygUCgwaNAi2trZSRySqlPv372PJkiUICQnBG2+8gU2bNqFDhw5Sx6p1UVFRUCqV8PPzw/r162u9AHTTpk2YOXMmTp06ha5du1arrZSUFHTq1An79u2Dj4+PhhISERERERERERERkZaoneJPpVKJvXv31nQ3RBrH2uj/w/OYiKqirs6jERERGDlypNQxiIjqneHDhyMyMlLqGBp39+5dHDhwADExMThw4AAKCgrQpUsXeHt7Y9SoUQ2ygI7qrrNnz8LPzw9JSUmYN28eFixYALlcLnWsWrVv3z6MHDkS/v7+WLNmTa32LYRA//79kZ6ejnPnzlX78e8+Pj64c+cOzpw5o6GERERERERERERERKQlaq/4Mz09HbNnz67prog04vTp0wgKCqqzRUs1gecxEVVGXZ9HnxR/7tmzR+ooRET1xrp169CyZct6Wfz5d/n5+Th69ChiYmKwf/9+ZGRkwMHBAd7e3lAqlejZs2et30mQqLKKi4uxceNGLF68GM2aNUNoaCg8PDykjlWr9u7di7fffhsLFy7ERx99VKt9//nnn3B2dsbs2bPx8ccfV6utuLg4uLu7Iy4uDj179tRQQiIiIiIiIiIiIiLSArVX/Amg3n/JR/XHk6Kfulq0VBN4HhNRZdT1ebSu5yci0kYN8XqypKQEp4y/9l8AACAASURBVE+fRkxMDPbt24fU1FRYWVnhrbfeglKpRL9+/RrcHRWpbrlx4wb8/f3xzTffQKlUYuPGjbCyspI6Vq358ssv8e9//xtLly7FwoULa7XvDRs24P3338eZM2fg4uJSrbZ69uyJpk2bIioqSkPpiIiIiIiIiIiIiEgLROpInYCIiIiIiIioPtLV1YWbmxtWrlyJ33//HRcuXMCcOXOQlpYGHx8fNGnSBAqFAuHh4cjJyZE6LtEzWrRogb179yI6Oho///wz2rdvj+DgYJSWlkodrVa888472LJlCxYvXozVq1fXat/vvfceevbsiQkTJqCwsLBabX3wwQdQqVRISkrSUDoiIiIiIiIiIiIi0gYs/iQiIiIiIiKqBU5OTpg3bx7i4uJw5coVrFu3DgAwadIkWFpaws3NDcHBwUhPT5c4KVF5CoUCycnJmDx5MubMmYM333yzwRQSTpgwAevWrcO8efOwefPmWutXR0cHn3/+OS5fvoyVK1dWqy0fHx907NgRa9eu1VA6IiIiIiIiIiIiItIGLP4kIiIiIiIiqmWtW7fG5MmToVKpcPv2bezatQsODg4ICAhAq1at4OTkhMDAQJw9e1bqqEQAABMTE6xcuRLx8fEoKipCly5d4O/vjwcPHkgdrcb5+/sjMDAQ06ZNw7Zt22qtX3t7e3z88cdYunQpEhISqtyOTCbD7NmzsWPHDly/fl2DCYmIiIiIiIiIiIhISiz+JCIiIiIiIpKQhYUFlEolwsPDcefOHcTGxsLDwwNbt26Fq6sr7O3t4e/vjyNHjqCoqEjquNTAvfLKKzh16hRCQkLwxRdf4OWXX8bBgweljlXjAgICMH/+fEyZMgW7d++utX79/f3RrVs3TJ48GSUlJVVuZ9y4cbCyskJISIgG0xERERERERERERGRlFj8SURERERERKQlDA0N4eHhgeDgYFy/fh3x8fF45513cOTIEXh6esLW1ha+vr6IjIxEXl6e1HGpgdLR0cHkyZNx6dIl9OzZEwMGDIBCoaj3d5Vcvnw53n//ffj6+iI6OrpW+tTR0cFnn32GCxcuICgoqMrtyOVyzJw5E5s3b8b9+/c1mJCIiIiIiIiIiIiIpKL1xZ+///47ZsyYAScnJ5iamsLAwABWVlbo0KEDhg4dim+//bZWckycOBGNGzeGTCbDr7/+Wit9njlzBh07doSOjg5kMhlsbGzwySef1Erf6vrmm2/g4OAAmUwGmUwGW1tbjB07VupYVM8cOHAAZmZmUKlUkuZYs2YNrK2tIZPJsHnz5hrpY8WKFTAzM6vVuaayVq1ahQ4dOsDIyAgmJibo0KED/vOf/yA3N7fKbf72228YNWoU7O3tIZfL0bRpU7z88svVmvNqetxIPf/VhbFCVFf903WftqxHQM3MxQCQkpJSdu3duHFj6OnpwczMDO3atcPAgQNx+vRpDX0C7ff0PP+8nzZt2kgds5y6MHapcnR0dODi4oLAwEAkJSXh8uXLCAgIwK1btzB69GhYW1vD09MTwcHBuHXrltRxqQFq1qwZwsPD8d133yEpKQnOzs4IDQ1FaWmp1NFqzKpVqzBhwgQolUocOHCgVvps3749FixYgICAAFy+fLnK7UydOhUymQxbtmzRYDoiIiIiIiIiIiIikopWF39+8cUXcHZ2xq+//oq1a9fi2rVryMvLw88//4w1a9agsLAQhw4dqpUs27Ztw9atW2ulrye6d++Oixcvol+/fgD++jJ+8eLFtZqhIsOGDUNaWhocHR1hZmaG27dv46uvvpI6FtUzQgipIwAA5s6di1OnTtVoHwsWLEBYWFiN9lFdJ06cwKRJk3Dt2jXcuXMHS5cuxapVqzB8+PAqtZeYmIgePXrA1tYWP/74I3JycnDq1Cm89dZbOHbsWJVz1vS4kXr+qwtjhaiu+qfrPm1ZjwDNz8UAsH37djg7O+P8+fNYu3Ytrl+/jocPHyIhIQFLly7F/fv3kZiYqMFPod2enueFEBBCoLi4GPn5+bhz5w6MjY2ljllOXRi7VD0ODg7w9/dHbGwsbt26hbCwMFhYWGDRokVo2bIlXF1dERgYiEuXLkkdlRqYAQMGICkpCbNmzcLs2bPRtWtXnD17VupYNUImkyE0NBTjxo3D8OHDq/VvlspYuHAh2rVrh0mTJlV5Xjc1NcXkyZOxdu1aPHr0SMMJiYiIiIiIiIiIiKi2aW3x55kzZzBx4kT06NEDP/74I/r37w9zc3PI5XI4ODjA29sb69evlzpmg1NQUIAePXpIHYPqgcqMpYEDByInJwcKhaKGU5E6DAwM8N5778HKygqNGjWCUqnE4MGDy4oQKmvNmjUwNzdHUFAQ2rRpA0NDQ7Rr1w5Lly6FkZFRuW05bqg+4xqr/bRpXtH0XHzmzBn4+fnB3d0dR48efebae+TIkQgICEBhYaHabdbXMa2rqwsjIyNYW1ujXbt2UsdRizaNXdKcpk2bwtfXFxEREcjMzMT+/fvh4uKCzZs3o2PHjnB0dIS/vz/i4uJYAEy1wsjICIGBgYiPj4dcLsfrr7+OhQsXoqCgQOpoGieTyRAWFgYfHx94e3vjxIkTNd6nnp4ewsLCcPz4cXz55ZdVbsff3x/Z2dnYuXOnBtMRERERERERERERkRS0tvhz2bJlKCkpwYoVK6Cnp/fcbRwcHGrs0cvPI5PJaq0vbbV9+3ZkZGRIHYPqASnHkhACkZGRfNRdFe3btw+GhoblXmvRogUA4MGDB5VuLysrCzk5Obh371651w0MDJ55PC3HDdVnmhrfHKuaURvXfdX5XWl6Lv7kk08qvPbu378/pk+frnabDWFM79+/X+oIz9D2sUs1w8jICAqFAmFhYbhx4wZOnDgBpVKJ77//Hu7u7rCxsYGvry9UKhUeP34sdVyq55ydnXHy5EmEhIRg48aN6Ny5M2JjY6WOpXG6uroIDw9H3759oVAoEB8fX+N9duvWDdOnT8ecOXNw586dKrXRokULjBkzBqtXr0ZpaamGExIRERERERERERFRbdLK4s/CwkIcOXIETZo0Qffu3Su1b0lJCQICAmBnZwcjIyP861//wp49ewAAoaGhMDExgbGxMaKiouDl5QVTU1O0bNkSu3btKteOEAKrV69G+/btIZfLYWZmhg8++KBS/X366acwNjZG48aNkZGRgTlz5qBFixZISUnB999/D1NTUyxbtqzSx0fdz7F+/XoYGhrC2toaU6ZMQbNmzWBoaIgePXrg559/Lttu5syZMDAwgK2tbdlr7733HkxMTCCTyXD37l0AwKxZszBnzhxcvnwZMpkML730UqWzA389prRTp04wMzODoaEhnJ2dcejQIQDAxIkTIZPJIJPJ4OjoiISEBADAu+++C2NjY5iZmSE6OhpA1Y891Z6ffvoJ3bp1g7GxMUxNTeHs7Izc3NznjqV/+p1t374ddnZ2kMlkCAkJAVC5c7mkpATLly9H+/btYWRkhKZNm8Le3h7Lly/HiBEjNPI5hRBYu3YtOnbsCLlcDgsLCwwePPiZx22qu93T7ty5gzZt2kBPTw9vvfUWAPXPW3XngepKTU2Fubk5WrduXfaauvNc165d8fDhQ/Tp0wcnT578x+3qw7jhWKn/duzYAVdXVxgaGsLExARt2rTB0qVLAbx4/funNfZFa92T99UZq+qMqX86n9zd3dVem9Wlqeu1io55Zc65iq774uLitHJe+buqzsWFhYU4evQoLC0t0a1bN7X745guj2OXtIWuri7c3NywcuVKpKSk4MKFC5gzZw7S0tLg4+ODJk2aQKFQIDw8HPfv35c6LtVTMpkMkydPxqVLl+Di4oJ+/fphxIgRyMzMlDqaRunr6yMyMhI9e/aEp6dn2ZpSk5YvXw5zc3P4+/tXuY0PP/wQqampz/yxHRERERERERERERHVMaIWDB8+XAwfPlzt7X///XcBQHTv3r3Sfc2dO1fI5XKxd+9ekZ2dLRYuXCh0dHTEL7/8IoQQYtGiRQKAOHr0qMjJyREZGRnC3d1dmJiYiMLCwrJ2Fi1aJGQymfjvf/8rsrOzRX5+vti4caMAIBISEirdn7+/v9iwYYMYOnSouHjxooiJiRGNGzcWH3/8cYWfqX///gKAyM7OLpdPnc/h5+cnTExMRHJysnj06JFISkoSXbt2FY0bNxbXrl0r227MmDHCxsamXL+rV68WAERmZmbZa8OGDROOjo7PZHR0dBRmZmYVfhYhhIiMjBSBgYHi3r17IisrS3Tv3l1YWlqW60NXV1fcuHGj3H6jR48W0dHRZf9d1WOvjj179ohaOj3qjMqexw8ePBCmpqZi1apVoqCgQNy+fVsMHTq0bDw9byz90+/s+vXrAoDYsGHDM9tWdA4sW7ZM6OrqiqioKJGfny/Onj0rbGxsRK9evap0HFJTUwUAsWnTprLXAgIChIGBgdixY4e4f/++OH/+vHj11VdF06ZNxe3btyu93a5du8rNNYWFhWLYsGEiKiqqXBZ1z1t154HKKiwsFOnp6WLDhg1CLpeLHTt2lHtf3XkuPz9fuLq6CgACgOjUqZNYtWqVyMrKemZbbRw3lZn/GtJYqevzaFXyr1u3TgAQK1asEFlZWeLevXsiLCxMjBkzRgih3vr39PiuaK1Td6yqO6b+6XxSd21Wl6au1yo65pX53Opc92nTevSEJubiql57N5Qx/bx53t/fXyQmJj5zTDh2X6yy15OkeVevXhVhYWHC29tbGBgYCF1dXdGzZ08RFBRUretCoopER0eLVq1aCQsLCxEWFiZKS0uljqRR+fn5olevXsLa2lokJyfXeH9Hjx4VMplMfPvtt1VuQ6FQiNdee02DqYiIiIiIiIiIiIiolkVoZfFnfHy8ACA8PDwq1U9BQYEwNjYWo0aNKnstPz9fyOVyMW3aNCHE/33JWVBQULbNky9I//jjj7J9jI2NhaenZ7n2ny6yqWp/lfWi4s8XfQ4h/irkefrL6l9++UUAEB999FHZa7VZ/Pm05cuXCwAiIyNDCCHEkSNHBADxySeflG2Tk5Mj2rZtK4qLi4UQNX/s63rRUk2o7Hl84cIFAUDExMQ89/0XFfE9/Tt7UcFCRedA165dRbdu3cq1N3nyZKGjoyMeP36s9ud54uniz/z8fNGoUaNyY1EIIf73v/8JAGXFNupuJ0T5uaaoqEi8/fbb4uDBg89kqUxBnzrzQGXZ2NgIAMLS0lIEBweXKxSprMLCQhEcHCw6dOhQVgRqbW0tjh07Vm47bRw36s5/DW2s1PV5tLL5CwsLhbm5uejdu3e514uLi0VQUNBz93l6/Xt6fKuz1qkzViszpv7pfFJnbVaXpq7XKjrmlTnn1LnuE0K71qMnNDEXV/Xa+2n1dUw7OjqWrU1//3lR8SfH7vOx+FO73Lt3T0RERIhx48YJU1PTsj/CWbJkiYiPj693xXkkvZycHDFz5kyhq6sr3nzzTXHp0iWpI2nUgwcPhLu7u2jRooW4fPlyjfc3btw40axZs3L/r6gyjh8/LgCIuLg4DScjIiIiIiIiIiIioloSoZWPfW/UqBEA4OHDh899PyIiAvb29mWPa+zYsSMyMjKQkpKC/Px8dO7cuWxbIyMj2NravvBRuQYGBgCAoqIiAMAff/yB/Px89O3b94U5q9pfTXn6c/wTV1dXGBsbS5LxefT19QH89UhJAOjTpw/atWuHzz77DEIIAMDu3bsxatQo6OrqAtC+Y0/PcnBwgLW1NcaOHYvAwED8+eefNd7n886BR48elY2jJ0pKSqCvr182nqojKSkJDx48gKura7nXu3btCgMDg7LHZau73dM5R48eDWtr67JHeGuKJuaB69evIyMjA19//TW+/PJLdOnSBRkZGVVqS19fHzNnzsTFixdx5swZDB48GBkZGVAqlcjOzq5yRnXU1rhpyGOlITh//jzu37+P/v37l3tdV1f3Hx/J+fT69zR11jp1xmpVxtTT1Fmb1aWp67WKjrm6n1vd677KqM31SBNz8ZNr7/z8/CrnAOr3mDYzM4MQouynMo/a5dglbWVhYQGlUonw8HDcuXMHsbGx8PDwwLZt2+Dq6goHBwf4+/vjyJEjFf4bk0gdpqamCA4OxokTJ5CVlYUuXbogMDAQhYWFUkfTCBMTE6hUKjRr1gy9e/eu8X8Dr1u3DiUlJVi4cGGV9nd3d0ePHj3w6aefajgZEREREREREREREdUWrSz+bN26NeRyOf7444/nvj9ixAhcuXIFrVu3ho2NDS5evAhra+uyYtHFixeXFYbKZDJcvXq1Ul9mp6enAwCsrKxeuJ2m+pOCXC5HZmamJH1/99136NWrF6ysrCCXy/Hhhx+We18mk2HKlClIS0vD0aNHAQDh4eGYMGFC2TZ1+dg3FEZGRvjhhx/g5uaGZcuWwcHBAaNGjUJBQUGt5hgwYADOnj2LqKgoFBQUID4+Hvv374e3t7dGChbu378P4P8KZ/7O3NwceXl5ldru76ZPn47U1FRs3rwZycnJ1c76tOrOA/r6+rCyskK/fv2we/duJCUlYfny5dXO9dprr+Hbb7/F1KlTkZmZiR9//LHabVZWTYybhjxWGoLc3FwAf/2O/klF69/T1Fnr1BmrVRlTT1NnbVaXptbwio65up9b3eu+6qqp9UgTc3GbNm1gaGiI33//vVL7NeQxHRQUVK6ItTI4dkkbGRoawsPDA8HBwbh27Rri4+Pxzjvv4OTJk/D09IStrS1GjBiB8PBwtc4xohd5/fXXce7cOaxYsQJr1qxB165d1SrcrwvMzMxw8OBBmJqawtPTE7du3aqxviwtLbFu3TqEhYXhxIkTVWpj7ty5UKlUSEpK0nA6IiIiIiIiIiIiIqoNWln8+eSLp8zMTJw5c0bt/Z588blu3bpyd+YRQuD06dOV6h8AHj9+XCv91baioiLcv38fLVu2rJX+jh8/jnXr1gEArl27hiFDhsDW1hY///wzcnJysGrVqmf2GT9+PAwNDbFt2zakpKTA1NQUrVu3Lnu/rh77hsbJyQkqlQo3b97EvHnzsGfPHqxZs6ZWMwQGBqJPnz4YP348TE1NMXToUIwYMQJbt27VSPtPCjee9yX4388zdbf7uxEjRiA2Nhbm5ubw9fVFcXGxRjIDmp8HXnrpJejq6lbpS8Nhw4Y997ONGzcOQPXvRFcVmho3f5//OFbqt+bNmwMA7t69+9z31V3//k6dtU6dsVqVMfU8Fa3N6tLUGl7RMVf3c6t73VddNb0eAVWfi+VyOfr374+7d+/i5MmT/7jdvXv3MHHiRAAc09XBsUvaTkdHBy4uLggMDER8fDwuX76MgIAAZGdnY8KECbC2toanpyeCg4NrtLCN6jd9fX34+/vjt99+g7W1NXr06AE/P796UVzctGlTxMbGQkdHB/369UNWVlaN9TV69Gh4e3tj4sSJePToUaX3Hzx4MDp27Ii1a9fWQDoiIiIiIiIiIiIiqmlaWfwJAB999BH09fXxwQcfqP2IuVatWsHQ0BC//vprtfru3LkzdHR08NNPP9VKf7Xt2LFjEEKge/fuZa/p6enV2KP8zp49CxMTEwBAYmIiioqKMG3aNDg4OMDQ0BAymeyZfSwsLDBy5Ejs378fa9aswaRJk8q9X1ePfUNy8+bNsjsQWllZYcWKFXj11Vdr5K6EL5KUlITLly8jMzMTRUVFuHbtGkJDQ2FhYaGR9jt37oxGjRohPj6+3Os///wzCgsL4eLiUqnt/q53795o2rQptmzZgrNnz+KTTz4p9351ztvnzQPqyMrKwujRo595PTU1FSUlJWjVqlWlszx+/Pi54yIlJQUA8K9//avSbVaXpsbN3+e/hjZWGpo2bdqgSZMmOHz48HPfV3f9+zt11jp1xmpVxtTzVLQ2q0tTa3hFx7wy55w6133Vpcn1qCbm4sDAQMjlcrz//vv/eJfuCxcuQE9PDwDH9BO3bt3Cu+++W6l9GvLYpbrpyePfY2NjcevWLYSFhcHCwgKLFy9Gy5Yt4erqisDAQFy8eFHqqFQHOTo6IjY2Frt378a+ffvQoUMH7Nu3T+pY1WZra4sjR44gLy8PXl5eZXd9rgkbNmzArVu3sGzZskrvK5PJMHv2bOzYsQPXr1+vgXREREREREREREREVJO0tvjTxcUFO3bswNmzZ9GrVy98//33uHXrFoqLi3H16lXs2LED9+7dK7ePoaEh3n33XezatQuhoaHIzc1FSUkJ0tPTK3VHEisrKwwbNgx79+7F9u3bkZubi/Pnz2PLli0a6+/JY8Cq8j/nK6u0tBTZ2dkoLi7G+fPnMWvWLNjZ2WH8+PFl27z00ku4d+8e9u/fj6KiImRmZuLq1avPtNWkSRPcvHkTf/75J/Ly8l5YTFRUVIQ7d+7g2LFjZcVPdnZ2AIAjR47g0aNHSE1N/cfHu02dOhWPHz9GTEwMFApFufc09bummnPz5k1MmTIFly5dQmFhIRISEnD16tWyArLKjKXqmD59Ouzs7PDgwYMaad/Q0BBz5szBvn378NVXXyE3NxeJiYmYOnUqmjVrBj8/v0pt9zyDBg3C+PHjsWzZMpw9e7bsdXXPW0C9eUAdJiYmOHz4MH744Qfk5uaiqKgICQkJeOedd2BiYoL333+/bNvKzHNDhgxBREQE7t+/j5ycHERFRWH+/Pnw8fEpV/xZV8bN8+a/hjZWGhq5XI6FCxfi+PHjmDlzJm7cuIHS0lLk5eUhOTlZrfXv6fGtq6tb4Vqnzlitzph62ovWZnVpag2v6Jir+7nVve6rLk2uRzUxF7/yyivYuXMnLly4AHd3dxw4cAA5OTkoKirClStXsHXrVkyYMAH6+voA1Lumq89jWgiBgoICfPPNNzA1NVV7P6Bhj12q+5o2bQpfX19EREQgIyMD+/fvh4uLCzZv3oxOnTrB0dER/v7+iIuLQ2lpqdRxqQ5RKpVISUmBt7c3hg0bBoVCgfT0dKljVUurVq1w5MgRpKenw8vLCw8fPqyRfuzs7LBs2TKsXLkSCQkJld5/3LhxsLKyQkhISA2kIyIiIiIiIiIiIqIaJWrB8OHDxfDhw6u075UrV8SsWbOEk5OTMDExEYaGhsLe3l64u7uL+fPni+PHj5fb/vHjx2LevHnCzs5O6OnpCSsrKzFs2DCRlJQkNm7cKIyNjQUA0bZtW3H58mWxZcsWYWpqKgCI1q1bi99//10IIUReXp6YOHGisLS0FI0aNRJubm4iICBAABAtW7YUv/32W4X9rVq1ShgZGQkAolWrVmLHjh1lOQ8cOCAaN24sPvnkk3/87GfOnBFOTk5CR0dHABC2trZi2bJllfocfn5+Ql9fX7Ro0ULo6ekJU1NTMXjwYHH58uVyfWVlZYnevXuXHd8ZM2aIDz74QAAQL730krh27ZoQQohz586J1q1bCyMjI+Hm5iY2bdokHB0dBYAX/uzbt6+sr3nz5okmTZoIc3NzoVQqRUhIiAAgHB0dy/p5okuXLmLBggXPPT5VPfbq2LNnj6il06POqOx5/Oeff4oePXoICwsLoaurK5o3by4WLVokiouLhRDPjqX333//ub+zDRs2CFtbWwFAGBsbi0GDBlXqHPjhhx+EpaVlufGor68vOnbsKL755ptKHYP//ve/wsbGRgAQJiYmYujQoUIIIUpLS8Xq1atF27Zthb6+vrCwsBBDhgwRKSkp5fZXZ7tvvvlGWFhYCACiTZs2IiMjQ+Tm5opWrVoJAKJRo0YiPDxcCKH+eavuPKCuQYMGCXt7e9GoUSMhl8uFo6OjGDVqlEhMTCy3nTrznBBCHD58WIwcOVI4OjoKuVwuDAwMRPv27UVgYKB49OhRuW21adzs27ev0vNfQxordX0erWr+kJAQ4ezsLAwNDYWhoaHo0qWL2LhxoxCi4vXv6fF9+/btF651Qqg/x6kzptRdO1+0NqtLU9drFR1zdc85da77tGk9EkLzc/ET165dE3PnzhXOzs6iUaNGQldXV5ibm4suXbqICRMmiJMnT5ZtW9/HtLrz/OLFi4UQgmNXDdX5dyFpt+LiYnHixAkxb9480a5dOwFAWFlZiXHjxono6OhnrumIXuTHH38U7dq1E2ZmZiIoKEiUlJRIHalaEhMThaWlpfD09Kyxc6GkpES4ubmJrl27lv2buzJWrFghTE1NRXZ2dg2kIyIiIiIiIiIiIqIaEiETQohK1IpWiVKpBABERkbWdFf0lClTpiAyMhJZWVlSR6mSgQMHIiQkBPb29rXab0REBEaOHIlaOD3qjLp6HoeGhiI1NRXr1q0re62wsBDz589HaGgosrOzYWRkJGHCmlfX5wEpNNRxo8mxUtfn0bqSX4qxKtXaXNc11HmlsjimtY8mfyd19XqSKi8pKQkxMTFQqVQ4deoUjIyM0KdPHyiVSgwaNAjm5uZSRyQtV1BQgFWrVmH58uXo1q0btmzZgk6dOkkdq8r+97//wcPDA56entizZw/09PQ03kdKSgpeeeUVLF++HLNnz67Uvrm5ubCzs8PChQvx4YcfajwbEREREREREREREdWISK197DtpTklJidQR1Pb3RzifP38ehoaG/CKequz27duYOXMmJkyYUO51AwMD2NnZoaioqMYeG65t6tI8ILWGPm44VuqO2hqrXJurr6HPK+rimNY+HLtUVU5OTpg3bx7i4uLw559/lhUPT5o0CU2bNoWbmxuCg4Nx/fp1iZOStjIyMkJgYCB++eUXFBUV4ZVXXsH8+fPx+PFjqaNVSbdu3RAVFYUDBw5g4sSJNfIHRu3bt8f8+fOxePFiXL58uVL7mpqaYtKkSQgODkZhYaHGsxERERERERERERFRzWDxJ2mVefPmITU1Fb///jveffddLF26VOpIVIcZGRlBX18f27dvx507d1BUVISbN29i27ZtCAgIwKhRo3Dz5k3IZLIKf0aNGiX110odswAAIABJREFUx6kxly5davDH4O/UGTempqZSxySqtbGqztrMeeTFuB6pR5vGNP2FayJpgp2dHSZPngyVSoXbt29j165dcHBwwJIlS2BnZwcnJyfMnz8fcXFxWn/Hbap9L7/8Mk6fPo2QkBCEhoaic+fOOHr0qNSxqqR3796IiorC7t274e/vXyN9LFiwAPb29pg8eXKlz6dZs2YhMzMTu3fvrpFsRERERERERERERKR5LP6sxxYuXIjPP/8cOTk5sLe3x969e6WOVCFjY2N06NABHh4eCAwMrNOPdSPpmZmZ4fDhw7hw4QLatWsHIyMjdOrUCZ9//jlWrlyJL7/8Eh06dIAQosKfuvoFmDrzQH0/BpWlzripj+rimtHQ1dZYVWdt5jzyYlyP1KNNY5r+0lDXRKo5FhYWUCqVCA8Px927d3HixAl4eHjgq6++gru7O+zt7eHn5weVSsW7ylIZHR0dTJ48GRcvXoSzszM8PT3h6+uLrKwsqaNVWr9+/fD1118jNDQUH330kcbbNzAwwPbt2/HTTz9hx44dldq3RYsWGD58ONasWcNCbCIiIiIiIiIiIqI6QiZq4f/oKpVKAEBkZGRNd0WkERERERg5ciS/8PgbnsdEVBl1fR6t6/mJiLQRryfpRZKSkhAZGYmYmBicPXsWTZo0Qd++feHt7Y0hQ4agcePGUkckLaFSqTB16lQUFxfj008/ha+vr9SRKu2LL77Av//9b3z66aeYO3euxtv39/fHV199heTkZNjY2Ki939mzZ+Hq6ooffvgBvXv31nguIiIiIiIiIiIiItKoSN75k4iIiIiIiIgk5eTkhMDAQMTHxyMtLQ0BAQHIzs7GhAkTYG1tDU9PTwQHB+PWrVtSRyWJKRQKXLhwASNHjsS7776LgQMH4urVq1LHqpTx48cjKCgIH374IbZs2aLx9pcvXw5zc3PMmjWrUvu5uLjA3d0d69at03gmIiIiIiIiIiIiItI8Fn8SERERERERkdawt7eHv78/YmNjcfv2bYSFhcHCwgKLFy9Gy5Yt4erqisDAQFy8eFHqqCQRc3NzBAcH46effsKVK1fQqVMnrFq1CiUlJVJHU9vMmTPxn//8B1OnTsXu3bs12raJiQlCQkKwe/duxMTEVGrf2bNnIyYmBpcuXdJoJiIiIiIiIiIiIiLSPBZ/EhEREREREZFWsrS0hK+vLyIiIpCRkYH9+/fDxcUFmzdvRqdOneDo6Ah/f3/ExcWhtLRU6rhUy9zc3PDbb78hICAAS5YsgaurK+Lj46WOpbaPPvoI77//Pnx9ffHdd99ptG0vLy+MGTMG7733Hh48eKD2fj4+PnBwcMCGDRs0moeIiIiIiIiIiIiINI/Fn0RERERERESk9YyMjKBQKBAWFoYbN27gxIkTUCqVOHToENzd3WFrawtfX1+oVCo8fvxY6rhUS/T19TFv3jwkJibCwsICr7/+Ovz9/StV8CilTz/9FOPHj4dSqcSxY8c02nZQUBDy8/MRGBio9j46OjqYOXMmvvjiC2RlZWk0DxERERERERERERFpll5tdZSeno6IiIja6o6oWk6fPi11BK3E85iI1FVf5lHOeUREmpOeno6WLVtKHYPqCV1dXbi5ucHNzQ0rV65EUlISYmJioFKp4OPjAyMjI/Tp0wdKpRKDBg2Cubm51JGphrVt2xZHjx7Fjh07MHv2bKhUKmzatAn9+/eXOtoLyWQybNq0CXl5efDx8cGRI0fQtWtXjbTdtGlTLF++HFOnTsXo0aPx6quvqrXfhAkT8NFHH2HLli1YsGCBRrIQERERERERERERkebJhBCipjtRKpXYu3dvTXdDpHG1cHrUGTyPiagq6uo8GhERgZEjR0odg4io3hk+fDgiIyOljkH13PXr13Hw4EGoVCocPnwYJSUl6N69OxQKBYYOHYq2bdtKHZFq2M2bNzFz5kx88803GDduHNatWwdLS0upY71QUVERhgwZgpMnT+LHH3/EK6+8opF2hRDo27cv8vLycObMGejq6qq134cffoidO3fiypUrMDAw0EgWIiIiIiIiIiIiItKoyFor/gTAL/mq4UkRSl0toqlreLyfxfOYeF5QZdT18VLX81P9JJPJsGfPHowYMULqKERVwutJksLDhw/xww8/IDIyEtHR0cjJyUGnTp2gUCjg7e2Nnj17QiaTSR2TakhUVBSmTZuG4uJibNiwQevX0IKCAnh5eeHixYs4fvw42rdvr5F2U1JS8PLLL2P16tWYMWOGWvvcuHED9vb2+OyzzzB27FiN5CAiIiIiIiIiIiIijYrUkToBEREREREREVFNMDExgUKhQHh4OO7evYsTJ07Aw8MDX331Fdzd3WFvbw8/Pz+oVCoUFRVJHZc0zMfHB8nJyRg1ahTefvtteHt74/r161LH+kdGRkaIjo6GnZ0d3nrrLdy4cUMj7bZv3x5z587FokWLkJ6ertY+LVq0wPDhw7Fu3TqNZCAiIiIiIiIiIiIizWPxJxERERERERHVe3p6enBzc0NwcDDS09Nx4cIFjB8/HmfPnsWgQYNga2uLESNGIDw8HLm5uVLHJQ0xMzNDcHAwjh07hj/++APOzs4IDg5GaWmp1NGey9TUFN9//z2MjY3Rv39/ZGVlaaTd//znP2jevDlmzZql9j5z5szBuXPncOzYMY1kICIiIiIiIiIiIiLNYvEnERERERERETU4Tk5OCAwMRHx8PNLS0hAQEIDs7GxMmDABNjY28PT0RHBwMG7evCl1VNIAd3d3JCQkYMqUKZgzZw569eqFlJQUqWM9l6WlJWJjY/Hw4UMMGDAADx48qHabcrkcmzdvxr59+xAdHa3WPi4uLnBzc+PdP4mIiIiIiIiIiIi0FIs/iYiIiIiIiKhBs7e3h7+/P2JjY3H79m2EhYXBwsICixcvRqtWreDq6orAwEAkJydLHZWqwcjICCtXrkR8fDwePnyILl26YNWqVSgpKZE62jOaN2+O2NhYXLt2DT4+Pnj8+HG12+zVqxdGjx6NGTNmqF1QOnv2bKhUKly6dKna/RMRERERERERERGRZrH4k4iIiIiIiIjo/7O0tISvry8iIiKQkZGB/fv3w8XFBWFhYXBycoKjoyP8/f0RFxentY8Opxd75ZVXcObMGSxZsgRLliyBq6srzp07J3WsZ7z00ks4dOgQEhISMGrUKBQXF1e7zaCgIOTn5yMwMFCt7QcPHgwHBweEhIRUu28iIiIiIiIiIiIi0iwWfxIRERERERERPYeRkREUCgXCwsKQnp6OEydOQKlU4tChQ3B3d4eNjQ18fX2hUqk0cmdGqj36+vqYN28eEhMTYWZmhu7du2P+/Pla93v817/+he+++w6xsbGYOHEihBDVaq9p06ZYvnw5goKC1Cp41dHRwYwZM/D5558jKyurWn0TERERERERERERkWbVyeLPAwcOwMzMDCqVSuooRKSlOE8QEVUe504iIqJ/pqurCzc3N6xcuRKXLl3ChQsXMHfuXKSlpcHHxwdNmjSBQqHAli1bkJGRIXVcUlPbtm3xww8/ICQkBBs3boSLiwvOnDkjdaxyXn/9dezatQs7d+7EwoULq93exIkT8cYbb8DPz0+tR97/+9//hoGBAbZu3VrtvomIiIiIiIiIiIhIc+pk8Wd173JARPUf5wkiosrj3ElERKQ+JycnzJs3D3Fxcbh9+zY2bdoEAJgxYwaaN28ONzc3rFq1CqmpqRInpYro6Ohg8uTJSExMRPPmzdGzZ0/4+fnhwYMHUkcro1Ao8MUXX+DTTz/F6tWrq9WWTCbDpk2bkJiYiNDQ0Aq3b9y4MSZOnIgNGzagsLCwWn0TERERERERERERkebUyeLPgQMHIicnBwqFQuooKCgoQI8ePaSOIbnaOA481prx+PFj9OrVC1u2bMG9e/ekjlNjOE+QpnGeq7umTp2KJUuW4NKlS1JH0XqcO6kh4HxORDXB2tq67PHv9+7dw7fffgsHBwesWLEC7dq1g5OTE+bPn4+4uDj+sYUWa9OmDQ4fPozdu3fjm2++gbOzM2JjY6WOVWbMmDFYv3495s2bh23btlWrrfbt22POnDlYtGgR0tPTK9ze398fmZmZiIyMrFa/RERERERERERERKQ5dbL4U5ts376dj3ND7RwHHmvNEELgp59+gp+fH2xsbODl5YWvv/4aDx8+lDpavcWxWz9wnqu7UlJS8PHHH6Njx45wcnLCmjVrcP36daljUQV4PlBN4XxORDXNxMQECoUC4eHhyMrKwokTJ+Dh4YGdO3fC3d0d9vb28PPzg0qlQlFRkdRx6TmUSiWSkpLg6uqKfv36YcSIEcjKypI6FgDgvffew6JFizBlypRqF2IGBASgefPmmDVrVoXbtmzZEsOGDcPatWur1ScRERERERERERERaU6dK/6Mi4uDnZ0dZDIZQkJCAAChoaEwMTGBsbExoqKi4OXlBVNTU7Rs2RK7du0q23f9+vUwNDSEtbU1pkyZgmbNmsHQ0BA9evTAzz//XLbdzJkzYWBgAFtb27LX3nvvPZiYmEAmk+Hu3bsAgFmzZmHOnDm4fPkyZDIZXnrpJQDA999/D1NTUyxbtqw2DkmVCCGwdu1adOzYEXK5HBYWFhg8eHC5u6JV5zjwWNcNxcXFiI2Nxbhx42BhYYGBAwciMjKyzj/GjfMEAZzn6PkuXryIhQsXonXr1njttdcQHByMO3fuSB1LK3DuJG3F+ZyI6jJdXV24ubkhODgY169fx4ULFzB+/HicPXsWgwYNgo2NDUaMGIHw8HDk5uZKHZf+xsbGBpGRkYiOjsapU6fg5OSEvXv3Sh0LALB06VLMmDEDY8eOxeHDh6vcjlwux6ZNm7Bv3z5ER0dXuP2cOXNw7tw5HD9+/Jn3SktLq5yDiIiIiIiIiIiIiKpI1ILhw4eL4cOHa6y969evCwBiw4YNZa8tWrRIABBHjx4VOTk5IiMjQ7i7uwsTExNRWFhYtp2fn58wMTERycnJ4tGjRyIpKUl07dpVNG7cWFy7dq1suzFjxggbG5ty/a5evVoAEJmZmWWvDRs2TDg6OpbbLiYmRjRu3Fh8/PHHGvvMe/bsEZr8dQUEBAgDAwOxY8cOcf/+fXH+/Hnx6quviqZNm4rbt2+XbVed41BXj7UQmj/e2qSgoEAAeO6Pvr6+kMlkwsTERIwdO1ZER0eLoqIiIYTmz+Oa1hDniZpW184LznPS0qbx0rt37+fOeTKZTOjq6godHR3Ru3dv8eWXX4rc3FwhhHblr02cO7UbALFnzx6pY9Q6zuf1R127niSqaWlpaSIoKEh4eHgIPT09YWhoKDw8PERQUJC4ceOG1PHob7Kzs8XkyZOFTCYT3t7eIj09XepIoqSkRIwaNUo0btxY/PLLL8/dprS0VBQUFFTY1ujRo4WdnZ3Iy8sr9/rt27fFZ599Vu61nj17isGDB5f9961bt8SSJUtEt27dqvApiIiIiIiIiIiIiKgaIurcnT8r0qNHD5iamsLKygqjRo3Cw4cPce3atXLb6Onpld05qFOnTggNDUVeXh4+//xzjWQYOHAgcnNz8Z///Ecj7WlaQUEB1q5di6FDh2Ls2LEwMzODs7MzNm/ejLt372LLli0a66uhH+u6pqioCEIIPHz4EBERERg0aBCaN28Of3//srtZ1QecJ+o/znOkDiEESkpKUFpaiuPHj+Pdd9+FpaUlBg4ciDNnzkgdT+tw7iQpcD4novrM3t4e/v7+iI2Nxe3btxEWFgYLCwssXrwYrVq1gqurKwIDA5GcnCx11AbP3NwcYWFh+PHHH5GSkoLOnTtjy5YtEEJIlklHRwfh4eFwd3eHl5cXLl68WO79kpISTJo0CRs3bqywrbVr1yIvLw+BgYEA/rqL56ZNm9C2bVssWrSo3LazZ89GdHQ09u3bh7Fjx6JVq1b4+OOPkZiYqLHPRkRERERERERERETqqXfFn39nYGAA4K+CthdxdXWFsbFxuUdH1mdJSUl48OABXF1dy73etWtXGBgYlHu8pabVtWMtk8nq3Y+RkZFan/3Jo98zMzOxfv16HDt2DIcOHUJERERNHvJax3mifuI8pz2knvNkMhl+/fXXCnM+KQItKirCgQMHsG7dOgDA/Pnz8fjx45o+THUO506qLZzPiaihsLS0hK+vLyIiIpCRkYH9+/fDxcUFYWFhcHJygqOjI/z9/REXF8fHa0vozTffxK+//go/Pz9MmzYNvXv3RmpqaoX71VSRqL6+Pvbu3YuOHTvC09MTV69eBfDXH08MGTIE27dvR3BwcIVjxsbGBitXrkRQUBB27twJV1dXTJ8+HXl5ebh16xZu3rwJ4K9rZj09PbRq1QrDhg1DZGQkiouLIYRAQUFB2f9HICIiIiIiIiIiIqLaoSd1AG0hl8uRmZkpdYxacf/+fQBAo0aNnnnP3NwceXl5Ndp/XTrW9a3QEfirUGfMmDFqbauvr4+ioiLY2NjA3NwcdnZ2GDFiRA0n1F51aew2dJzntIc2zKMrVqxAdnZ2hdvp6uqitLQUcrkcLi4uOHnyJJYuXQp9ff1aSFl/8Xyg6uB8TkQNkZGRERQKBRQKBTZt2oRTp04hJiYGUVFRWL9+PZo2bQovLy8oFAoMGDAAJiYmUkduUIyNjbFy5Ur4+Phg4sSJeOWVVxAQEIC5c+dCV1f3me2FEHj77bexYsUK2NvbazyPkZERVCoVevXqBU9PT8TExGD8+PH45ZdfAADXr1/Hd999B4VC8cJ2RowYgWXLlmHcuHHQ09MrKxiVyWRld6cNCgrCnTt3oKPz19+SP13smZ2dDRsbG41/RiIiIiIiIiIiIiJ6PhZ/4q9iuPv376Nly5ZSR6kV5ubmAPDcL8tr+jjUtWOtVCqljqBxjx49euH7Two+GzVqhCFDhsDX1xd9+/Zt0EWfQN0buw0d5zntoQ3z6KZNm/7xvSdf0Ash8MYbb2D8+PEYOnQoDhw4gJMnT7Lws5p4PlB1cT4nooZOR0cHbm5ucHNzw8qVK5GWlgaVSoXIyEiMHDkSRkZG6NOnDxQKBQYPHgxra2upIzcYr7/+On799VesXbsWAQEBiIqKwrZt2/4fe3ceH+O5/4//Nclkl8UWJLGGNEXKUTRSdNOiqqjEcvT06PIV9BCqrZYWpaFKBUUXdZwPeiqkbZSitRytlNhKBbXVGhEhIUH25P37wy/DSDKZSWbmnnvm9Xw88mjN3HPf7/u63u/rujNz5R60bt1ab7tly5YhPj4eJ0+exO7du+Hm5mb2WHx9fbFx40Z06dIF4eHhuHXrFoqLiwEAWq0WcXFxBhd/rl+/Hv/v//0/ZGZmQkT07u6u1Wrx2muvobS0VLcgtKSkpML9ZGVlcfEnERERERERERERkRXZ9de+G2vHjh0QEYSHh+se02q1VX6VqVq1bdsWtWrVwv79+/Ue37NnDwoLC/Hwww/rHjN3OzhaW6uFs7MznJyc4Orqiueffx4//PADsrKysGLFCvTo0QMajUbpEBXH3FUXjnNkiEajgYuLCzQaDR5++GF88sknSE9Px/bt2/HSSy9VeIdBqh7WA9UUx3MiIn0tWrTQff17enq67o9cxowZg4CAAHTt2hWzZ8/GyZMna3Sc/Px8fr28EVxcXDBx4kTs378fJSUlaN++Pd555x3dHTFTU1Mxbtw4AMDhw4fxxhtvWCyWvLw8FBcX49atW3pzVXFxMXbs2IHjx4+Xe83x48fRvXt39OvXDxkZGboFo/cqKipC06ZNjcqHrKysmp0EEREREREREREREZnEIRd/lpaW4vr16yguLsbhw4cxbtw4NGnSBMOHD9dt07JlS2RlZSExMRFFRUW4evUqzp8/X25fderUQVpaGs6dO4ebN2+iqKgImzZtgo+PD2JjY614VsZzd3fHhAkT8N1332HVqlXIyclBSkoKRo0ahUaNGiE6Olq3bU3aAWBb2zKNRgMnJydotVo8++yzWL16NW7cuIGEhAT07dvX4e92x9xVN45zVBGt9s4Nz9u3b4+PP/4Yqamp2LNnD2JiYlC/fn2Fo7MPrAcyN47nRESV8/f3x0svvYT169cjKysL33//PVq0aIFZs2bhgQceQJs2bfDOO+8gKSkJImLSvuPj4/HMM88gPT3dQtHbl7CwMPz222+YM2cOFi1ahI4dO2Lv3r0YNWqUbiFoSUkJlixZgpUrV5r9+AcOHECnTp1w5cqVCv9IwcXFBYsWLSr3+Pfff4+kpCQAMJgjaWlpmDp1apV/GMrFn0RERERERERERETWpbrFn4sWLUKnTp0AABMnTkS/fv2wZMkSxMXFAQAeeughnDlzBkuXLsWECRMAAL169cKpU6d0+8jPz0dYWBg8PDzQrVs3hISE4H//+5/eV2+NHj0aTzzxBIYOHYoHHngAM2bMgIeHB4A7X+118eJFAMCoUaPg7++P1q1b49lnn1XNG91Tp07FzJkzMX36dNSrVw+PPfYYmjVrhh07dsDLy0u3XU3bgW1tm5ydnfHYY49h6dKluHr1Kn744QdERUXp2l3tOE4QwHGO7nJ2dkZwcDCmTJmCU6dO4ffff8e4ceMQEBCgdGg2hWMn2SqO50REVfPy8kLfvn2xYsUKZGZmYufOnejRowe+/vprdOvWDc2aNUN0dDTWr1+vW4xoyPfff49t27ahTZs22Lp1qxXOQP20Wi1iYmJw6NAh1K1bFxEREfjxxx/1FmNqNBpER0fj2LFjZjvu1q1b0b17d+Tk5FR4504AKCwsxL///W/k5OToPf7uu+9i/fr18PDw0P2hVEXy8vIwcOBAjBs3Dk5OFb+V6OzszPmOiIiIiIiIiIiIyMo0YurtH6ohKioKALB27VpLH6pKI0eOxNq1a5GZmal0KCZZs2YNBg8ebPLdOpSk1rYG1NnexiotLUVGRgYaNmxo0utsqY4tTc25a0n2XBfVxVypnC3lS1pamskLPW0pfrVgPVieRqNBfHw8Bg0apHQodof5ax2OdD1JZEuOHj2KtWvXYsOGDThw4ABq166NHj164LnnnkP//v3h4+Ojt31eXh7q1KmD/Px8ODk5QUQwZswYzJ071+G/IcJYly9fRsuWLZGXl1fuelKr1aJFixb4/fff9f6IoTqKi4sxbNgwrFmzBlqtttLFn8CdxZlxcXEYM2ZMuedSUlLw7LPPIj09vcJ9ODs74/PPP8err76K4cOH4+uvv0ZJSYneNq6urvjoo48wfvz4Gp0TERERERERERERERltreru/GkO979BTZbDtrY9Tk5OJi/8dETMXTIWc8X28Q6f1sN6IDVj/hKRvWrTpg2mTZuG/fv34+zZs5g6dSquX7+O1157DQ0aNMDTTz+NBQsWIC0tDQCwZcsW5OfnA7jzx4MigsWLFyM8PBxnz55V8lRUY/To0SgqKqrwD4mKi4tx5swZvPrqqzU+jlarRXx8PJKTk/HII48AuLNQsyIlJSX45JNPUFpaWu65sLAwHDp0CI8++miFr9doNNizZw80Gg2++uor9OjRo9ydQjUaDa5fv17jcyIiIiIiIiIiIiIi4znk4k8iIiIiIiIiIkfTrFkzxMTEYMuWLbh06RKWLFkCLy8vvPvuu2jcuDEiIiLw0UcflbvDZ0lJCVJSUvDQQw8hISFBoejVYfXq1UhMTNT7uvf7FRcXY82aNVi6dKlZjvnII48gKSkJW7ZsQUhICJycnKDRaMptd/78eWzZsqXCfdStWxdbt27FhAkTKox3586dAAAXFxd8//336Nixo16elJaW8mvfiYiIiIiIiIiIiKzMoRZ/Tpo0CcuXL0d2djaaN2/ODywsiG1NasXcJWMxV4juYj2QmjF/ichR1a9fHy+//DISExNx7do1fPvttwgJCcHBgwcrXLhYVFSE3NxcREVFYezYsSgsLFQgatt29epVjB492qhtRQSvv/46Dh48aLbj9+jRA0eOHMHq1asREBBQ7u6cWq0WCxYsqPT1Wq0Ws2fPxhdffAGtVqt3F9CTJ08iJycHAODh4YHNmzcjJCREtwC0uLiYiz+JiIiIiIiIiIiIrMyhFn/OnDkTBQUFEBGcPXsWkZGRSodkt9jWpFbMXTIWc4XoLtYDqRnzl4gI8PT0RP/+/fHqq6/qvvK9ImVfGb5kyRJ06tQJp0+ftlaIqnDlyhW8+OKLCA0NhUajgUajgaura6Xbl5aWon///rhx44bZYnByckJUVBTOnDmDuXPnolatWrpFoMXFxdi8eTNOnjxpcB8jRozAjh074Ofnp1vcKSI4cOCAbhtfX1/8/PPPaNCgAVxcXCAiyMjIMNt5EBEREREREREREVHVHGrxJxERERERERERVWzdunUGFyuWKSkpwbFjx9CuXTusXr3aCpGpQ9u2bbFw4UL8+eefuHLlCtatW4fx48fjoYce0i0Gvfer0ktKSnD58mUMGzYMImLWWFxdXRETE4Nz584hJiYGLi4uukWaX3zxRZWvf/TRR3HgwAG0atUKWq0WGo0Ge/bs0dsmICAA27dvh4+PD4A7dz4lIiIiIiIiIiIiIuvRVr0JERERERERkWPbvXs3Ll68qHQYRBa1YsUKo7/Ovbi4GMXFxRg6dCj+/e9/45///Kfewka6o0OHDujQoQNycnJw7Ngx/Pnnnzh8+DDS0tKg0WhQXFyMjRs34p///Ceee+45i8TQuXNnxMXFIT4+HklJSfjss8/Qvn17uLm5Vfnad955B4sWLcLevXuRkJCAFi1alNvm7bffxpQpU3Dp0iWsWbPGEqdAREQW0rhxY3Tp0kXpMKqF1+dUU8x/ouqJiIhAUFCQ0mFUC39foZpi/hPZhkGDBikdQrWkpqZi165dSodBKldR/nPxJxEREREREVEV5s2bh4SEBKXDILJJW7ZswZYtW5QOQ3XuvdvnypUrsXLlSqscNy8vDy+99JKqL/8aAAAgAElEQVTJrztw4AAGDx5c6fMFBQUGnyciItsTGRmJtWvXKh1GtfD6nGqK+U9UPfHx8apddMPfV6immP9EtkGtdbhr1y7WItUYF38SERERERERVZOaPxwkqsoff/yBzZs3w8fHB87OzvDz84OTkxP8/Pyg1Wrh7e0NV1dXeHl5wd3dHR4eHvD09DTq7pFUtYyMDJw+fRoRERFWOd758+fRtGlTk17z/fffo3v37qhbt26Fz69fvx7PPfccNBqNOUIkIiILi4qKUjqEGuP1OVUX85+oeuzhWl/Ni/dIWcx/IuWtWbPGLhZP3vsH4UTGMpT/Vlv8mZycbBe/TCklNTUVgH38QqoGZe1N+ljHjo3jEJnCXsZR5jvZmri4OL6xT6qVnJyM8PBwpcMgokq0a9cO7dq1UzoMh+Xv7w9/f3+rHc/UhZ8AMGDAAIPP9+3bt7rhEBEREREREREREVE1OCkdABknKCgIkZGR5R5PSEiwmwU2RGTbOA4RESkrMjISQUFBeo8lJycjOTlZoYiI1GvTpk347bfflA6DiIiIiIiIiIiIiIiIqNqsdufP8PBw3qXIAjQaDcaPH8/bc5uZvdwu2txYx1QRjkNUEXsZRznmka0ruzstc5XUICoqCllZWThz5gwCAgLg7u6uWCw//vgjFi9ejC5duuC9995D79697eKrm4iIiIiIiIiIiIiIiMhxWG3xJxERERERETm2X375BcHBwQAAd3d3BAQEoFGjRggICECLFi10/1/23yZNmkCrNf+vrWV3Ld+7dy/69OmD1q1b47333sOgQYPg7Oxs9uMRERERERERERERERERmRsXfxIREREREZFV9OrVC1OmTMHly5eRmpqK9PR0XLx4EZcvX8aGDRuQlpaG69ev67bXarVo0KABgoKC0LBhQzRu3BgNGzZEUFAQGjVqhMDAQAQEBKB27domxXHu3DkAQElJCQDg+PHjGDZsGN566y289dZbGDFiBDw8PMx23kRERERERERERERERETmxsWfREREREREZBUeHh7o3LmzwW0KCgqQmZmJy5cvIy0tDZcvX8aZM2eQlpaG48ePY/v27UhNTUVOTo7uNW5ubqhTp47BO4k2btwYPj4+AIC0tDS9Y5aWluoenzBhAj744AOMHTsWMTExJi8sJSIiIiIiIiIiIiIiIrIGJ6UDICIiIiIiIirj5uaGgIAAPPzww+jbty9GjBiBjz76CCtWrMCWLVtw9OhRZGdnIzMzEykpKdi0aRM+//xzjBo1Co888gicnJxw8OBBLFy4EK+88gqefvpptG3bFr6+vqhXrx7atm2LzMzMCo8tIigpKcH169cRGxuLwMBAxMTElFssSkRE1nfixAmMGTMGbdq0gbe3N7RaLXx9fRESEoI+ffpg9+7dSodIRER26rXXXoO3tzc0Gg0OHTqkdDgm+/bbb9GiRQtoNBq9H1dXV/j7++Pxxx/HnDlz9L6Fgeyf2vPaXFgfZCp7qp3S0lLExcUhIiKi2vtgDTkOe8p9c2ENkVLsoR6nT5+O1q1bw8fHB25ubmjZsiXefvtt3Lp1y+R9sY64+JOIiIiIiIhUqE6dOmjbti169eqF4cOH4/3338fixYuxbt067N27F5cuXUJBQQEuXbqEPXv2YN26dfjggw/w9NNP6+70aUhxcTHy8vKwZMkSNG/eHL///jtu375thTMjIqL7LVu2DGFhYTh8+DDmzZuHixcv4vbt2zh48CBmzJiBGzduICUlRekwiYjITn311VdYunSp0mFU28CBA3HmzBkEBwfD19cXIoLS0lJkZGRgzZo1aN68OSZOnIg2bdpg//79SodLVqL2vDYX1geZyl5q59SpU+jevTveeOMN5ObmVns/rCHHYS+5by6sIVKSPdTj9u3b8a9//Qvnzp3DtWvXMHPmTMyfPx9RUVEm74t1pMLFnyNHjtRbqfviiy+W22br1q149913UVpaigEDBqBJkyZwd3dHYGAg+vXrh8OHD1f7+IZW7//www+YPXs2SkpK9B5PTEzUi7levXrVPr6lsF3J0dhaPpNtYF4QGcYaIbWwZK6Wyc/PR2hoKN577z3dY8xV2+Ps7IyAgAB07twZzz//PF5//fUKf9cxRKPRoLCwEGfOnMHOnTuxadMmC0VLRFQzeXl5NbrbhK0eOzk5GdHR0ejWrRu2bduGnj17ws/PD25ubmjRogUGDx6MKVOmoLCw0CLHNwd77RsiIlIvjUYDPz8/PP7441i+fDnWrFmDK1euoE+fPsjOzlY6PCKTmfOax97rg9eH9Mcff+Cdd97BqFGj0L59e7Pv395riOxDTcZC1lDNcB4iAKhVqxaio6NRp04deHt7Y9CgQRgwYAA2b96Mixcv1nj/9l5H91Pd4k/gzh1eNm3ahBMnTmDZsmV6z02dOhULFy7EpEmTUFpaip07d+K///0vsrKykJSUhLy8PHTv3r1aX9tX1er9559/Hu7u7njqqadw48YN3eP9+vVDamoqfv31Vzz77LOmn7CVsF3JUdhiPpPymBdEhrFGSC0smav3mjx5Mk6cOKH3GHNVHVJTUw0+7+LiAo1GAwAICgrCkCFD8MUXX6B3797o1asXevfubY0wiYhMtmzZMmRkZNjdsT/88EOUlJRg1qxZ0Gq1FW7Ts2dP/Otf/7LI8c3BXvuGiMiRlP2OYK8iIyMxfPhwZGRk4PPPP1c6HLISe8prS17z2Ft98Pqw5tReO+3atcO3336LYcOGwc3NzeLHs7cacmRqz/171WQsZA3VDOch81B7PW7YsAHOzs56j5Xd8K8md9OtjL3V0f1UufjTw8MDvXr1QkhIiN5g+tFHH2H16tVYs2YNvL29AQBdunRB165d4enpiebNmyM2NhbZ2dn4z3/+Y9IxjV29HxMTg3bt2uHZZ59FcXExgDtFFxgYiG7duqFVq1amn7CVsF3JEdhqPpOymBdEhrFGSC0smav32rVrF44cOVLhc8xV23f58mXdmwoajQYuLi4A7twltEOHDhg3bhzWrVuHzMxMXLx4EStWrMCIESPg5eWlZNhEpJCVK1eiY8eOcHd3h5eXF5o1a4YZM2YAAEQE8+bNw4MPPgg3NzfUrl0b/fv3x/Hjx3WvX7JkCby8vODp6Yl169ahd+/e8PHxQVBQEL755huTjrdz5060bt0avr6+cHd3R1hYGH766ScAwLhx4zBhwgT89ddf0Gg0aNmyJQCgpKQEU6ZMQZMmTeDh4YGHHnoI8fHxJsdm7mMDwObNm+Hj44PY2NhK27+wsBDbtm1D3bp10blzZ6P7jX1Ts74hInJ0IoI5c+bggQcegJubG3x9ffHWW2+V285cY/kvv/yCzp07w9PTEz4+PggLC0NOTk6VxwCMm0+NNXz4cADQ+7YDWzhHMg9j8vrjjz+Gp6cnvL29kZGRgQkTJiAwMBAnTpww6vpq4cKFcHd3h7+/P0aOHIlGjRrB3d0dERER2LNnT7l4qtrf2LFj4erqioYNG+oee/311+Hl5QWNRoNr164BqPyax5L1YW9tRZVT05xgbpxjHJsjzhvmxnmI85C5OMpcdOnSJXh4eKB58+a6xzgXGUmsIDIyUiIjI82yr+joaAkMDCz3+KlTp0Sr1co333xj8PXXrl0TAPLKK69UO4ZHHnlE2rVrV+nzWVlZ4uHhIXPmzCn3XExMjNStW7fax74fAImPj6/xftiu+uLj48VK5aEa5qxjpagln9XGXOOQUpgXlqH2cVTt8ZsTa8S22cP8bC7WytXc3FyJiIiQY8eOCQCZPHlyuW2YqxWzlXx97733BIB4eHjI448/Lh988IFs375dbt++bfB1thI/EVlPXFycAJBZs2ZJZmamZGVlyRdffCHDhg0TEZEpU6aIq6urrFy5Um7cuCGHDx+WDh06SL169SQ9PV23n8mTJwsA2bZtm2RnZ0tGRoZ069ZNvLy8pLCw0OjjrV27VqZNmyZZWVmSmZkp4eHheu+FDBw4UIKDg/XO4c033xQ3NzdJSEiQ69evy6RJk8TJyUn27dtnUmyWOPaGDRvE29tbpk+fXmkfnDx5UgBIeHi4cZ32/2Pf1OzYROQY1H59a8n4J0+eLBqNRj755BO5fv265ObmyuLFiwWAHDx4ULedOcbyW7duiY+Pj8yePVvy8vIkPT1dXnjhBbl69apRxzBmPi0THBwsvr6+lT6fk5MjAKRx48Y2dY6W4Ij5b2xel/VpTEyMfPrpp/LCCy/In3/+afT1VXR0tHh5ecmxY8ckPz9fjh49Kp06dRJvb2+5cOGCbjtj9zds2DBp0KCB3rnMmTNHAOhySKTiax5L14c9tZWx1P55UHXiV9OcUB2G3pPnHKPP0fLfEeeN6lCyhhyx7dX++W1147f3uUhE5Pbt2+Lt7S1jx47Ve5xz0V0G8meN3Sz+HDNmjDg7O1f5gd3FixcFgIwbN67aMVS1MEFEpFevXhIYGCilpaV6j6tt8aejtqvaJw1LUPubISLqyWe1UfsvO8wLy1D7OKr2+M2JNWLb7GF+Nhdr5er48ePl66+/lqtXr1a6+FOEuVoRW8nXnTt3yt69e6WoqMik19lK/ERkHYWFheLn5ydPPPGE3uPFxcUyf/58yc3NlVq1asmQIUP0nt+7d68A0HtDsuxNwry8PN1jZW/Qnj592qjjVWTmzJkCQDIyMkSk/JvneXl54unpqRdjbm6uuLm5yejRo42OzVLHNsb+/fsFgPTo0cPo17BvrNM3RKR+ar++tVT8ubm54unpKU8//bTe4998843eh6vmGsuPHDkiAGTDhg3lYjH3mF3Vh6EiIhqNRvz8/FR7jsZytPw3Nq9FKu5TU66voqOjy+XZvn37BIB88MEHJu/PWot4TK0PEcdsK7V/HmRq/PY8J5Qx5j15YzjCHONI+c95w3hK1ZCIY7a92j+/rU78jjAXlcUWEhIiOTk51d6Hvc9FhhZ/qvJr3yvy448/4oEHHoCnp6fB7fbu3QsA6Nq1q0Xj+dvf/oZLly7hjz/+sOhxLI3tSvaE+UwVYV4QGcYaIbWwRq7+9ttv+Ouvv/D3v/+9ym2Zq7ara9eu6NSpE7RardKhEJENO3z4MG7cuIGePXvqPe7s7IyYmBgcPXoUt27dQseOHfWe79SpE1xdXct9Rdb9XF1dAQBFRUVGHa8iLi4uAO58dVBFTpw4gdzcXLRt21b3mIeHBxo2bKj31VxVxWbNY9+vVq1aAIDc3FyjX8O+sU7fEBHZq9OnTyM3NxdPPfWUwe3MNZa3aNEC/v7+ePHFFzFt2jScO3euxseortu3b0NE4OPjU6Pj2/I5Oipj87oyNb2+6tixIzw9PXV9WtP9KeH++qgM28q+OPKcYG6cY9SF84bt4TzkuBxhLvruu++wZs0a/PTTT/D29q72fqpiz3ORXSz+vH37Ns6ePYvg4OBKt7ly5QpWr16NmJgYdOnSBc8//7xFY2rVqhUAICUlxaLHsSS2K9kT5jNVhHlBZBhrhNTCGrmal5eHcePGYcmSJUZtz1wlIlK3nJwcAICfn1+Fz9+4cQPA3cWJ9/Lz88PNmzfNejzgzh86PP7446hfvz7c3Nzw9ttvG9zn7du3AQDvvfceNBqN7uf8+fMmLaZU8tjNmjWDu7s7Tp48afRr2DfWOzYRkT1KTU0FANSvX9/gduYaTz08PLB9+3Z07doVsbGxaNGiBYYMGYK8vDyrj9ll821oaCgA+zxHR2VsXlfGHNdXbm5uuHr1qtn2Z23310dl2Fb2xZHnBHPjHKMunDdsD+chx2Xvc9Hq1avx0UcfYceOHWjWrFm19mEse56L7GLxZ0ZGBkTE4F1+unTpgpiYGPTv3x+bNm3S/RW8pZTFcuXKFYsex5LYrmRPmM9UEeYFkWGsEVILa+TqpEmTMGLECAQGBhq1PXOViEjdAgICAADXrl2r8PmyhYAVvcl948YNBAUFmfV4Fy5cwIABA9CwYUPs2bMH2dnZmD17tsF9lr0pHBcXBxHR+9m9e7fRsSl5bDc3N/Ts2RPXrl3Db7/9Vul2WVlZeO211wCwb6x1bCIie+Xu7g4AKCgoMLidOcfTNm3aYP369UhLS8PEiRMRHx+PuXPnWn3M3rx5MwCgd+/eAOzzHB2VsXldmZpeXxUVFeltZ+7rNWu4vz4qw7ayL448J5gb5xh14bxhezgPOS57nos+/fRTrFq1Ctu3b9e9/2ZJ9jwX2cXiz/z8fAB33hCujL+/P7Zv345PP/0Uvr6+Fo/Jw8NDLzY1YruSPWE+U0WYF0SGsUZILSydq0lJSUhJSdEtKjEGc5WISN2aNWuGOnXq4Oeff67w+bZt26JWrVrYv3+/3uN79uxBYWEhHn74YbMeLyUlBUVFRRg9ejRatGgBd3d3aDQag/ts3Lgx3N3dcejQIZNisaVjA8C0adPg5uaGN954A3l5eRVuc+TIEWi1WgDsG2v2DRGRPWrbti2cnJzwyy+/GNzOXONpWloajh07BuDOh4+zZs1Chw4dcOzYMauO2enp6YiLi0NQUBBeeeUVAPZ3jo7M2Lw29PqaXF/t2LEDIoLw8HCT96fVanVfqamUiuqjMo7eVvbGUecEc+Mcoz6cN2wL5yHHZo9zkYhg4sSJSElJQWJiYoV3ljU3e5+L7GLxZ9kHqyUlJZVuU79+fYNfz2RuhYWFAO7GpkZsV7InzGeqCPOCyDDWCKmFpXN12bJl2LZtG5ycnHRfyVD213qxsbHQaDTl3vxgrhIRqZubmxsmTZqEX3/9FWPHjsWlS5dQWlqKmzdv4tixY3B3d8eECRPw3XffYdWqVcjJyUFKSgpGjRqFRo0aITo62qzHa9KkCQBg69atyM/Px6lTp7Bnzx69fdSpUwdpaWk4d+4cbt68CWdnZ7z88sv45ptvsGTJEuTk5KCkpASpqam4fPmy0bFZ6tibNm2Cj48PYmNjDR6/ffv2+Prrr3HkyBF069YNGzduRHZ2NoqKinD27FksXboUr776qu6u3uwb6xybiMhe1a9fHwMHDkRCQgKWLVuGnJwcHD58GF9++aXedu7u7mYZT9PS0jBy5EgcP34chYWFOHjwIM6fP4/w8HCjjmHsfFpGRHDr1i2UlpZCRHD16lXEx8fj0UcfhbOzMxITE+Hj42NT50g1Z2xeV8bU66vS0lJcv34dxcXFOHz4MMaNG4cmTZpg+PDhJu+vZcuWyMrKQmJiIoqKinD16lWcP3++XIz3X/MUFRVZtD7sra2oYmqbE8yNc4zjctR5w9w4D3EeMgd7nIuOHTuGjz/+GEuXLoWLi4ve16FrNBrMnTtXty3nIiOJFURGRkpkZKRZ9hUdHS2BgYF6j92+fVs0Go0899xzZjlGVR555BFp166dwW2++uorASArV67UezwmJkbq1q1rtlgASHx8fI33w3bVFx8fL1YqD9UwZx0rQU35rDbmGoeUwLywHLWPo2qP31xYI7ZP7fOzuVg7V0VErl69KgBk8uTJFT7PXC1P7fmq9viJqHoWLVokYWFh4u7uLu7u7vK3v/1NFi9eLCIipaWlMmfOHGnVqpW4uLhI7dq1ZcCAAXLixAnd6xcvXiyenp4CQFq1aiV//fWXfPnll+Lj4yMApGnTpnLy5Emjjjdx4kSpU6eO+Pn5SVRUlCxatEgASHBwsFy4cEF+//13adq0qXh4eEjXrl0lPT1dCgoKZOLEidKkSRPRarVSv359GThwoBw9etSk2Mx9bBGRjRs3ire3t3z44YdG9cWFCxfkzTfflLCwMKlVq5Y4OzuLn5+f/O1vf5NXX31VfvvtN9227Jua9Q0ROQa1X99aMv6bN2/Ka6+9JnXr1pVatWpJ165dZcqUKQJAgoKC5I8//hARMctYfu7cOYmIiJDatWuLs7OzBAQEyOTJk6W4uLjKY4gYN5/+8MMP8tBDD4mnp6e4urqKk5OTABCNRiN+fn7SuXNnmT59umRmZpZ7rS2coyU4Yv4bk9ezZ88WDw8PASCNGzfWe0/DmOsrkTufN7q4uEhgYKBotVrx8fGR/v37y19//aW3nbH7y8zMlCeeeELc3d2lefPmMmbMGHnrrbcEgLRs2VIuXLggIlLhNY8l68Pe2spYav48SKR68atpTjDW7t275dFHH5VGjRoJAAEgDRs2lIiICPnll19023GO0edo+e+I84axbKGGHLXt1f75bXXjt7e5KCUlRVc7Ff3MmTNHty3norsM5M8au1j8KSISHBws7du3r/A1p06dEn9/fxk0aFC55wYPHiz+/v5y4MABo2MwZmHCtGnTBIAcOnRI73E1Lf4Ucdx2VfukYQlqfzNERD35rDZq/2WHeWEZah9H1R6/ObFGbJs9zM/mYs1cFal68SdztTy156va4yciIiIiupfar2/VHj8pS+35Y8vxR0dHS506dZQOQxXU2FZq/zxI7fGTstSeP7YavxrHQnuhxrZX++e3ao+flGVo8addfO07APTp0wdHjx5FXl5euedEpNLXFRYWIiMjA+vWrTO4/+TkZHTt2hUBAQHYs2cP/vjjDzRq1AiPPvoofv3113Lb79u3D4GBgXjooYdMPxkbwnYle8J8poowL4gMY42QWlg6V03FXCUiIiIiIiIiR1RSUqJ0CKrBtiIi4lioJLY9kX2wm8WfY8aMgYjg22+/Lfdcq1atcOXKFcTHx5d7LiEhAd26dUPTpk0N7j88PBxJSUlIS0uDiEBEcPnyZfz222/o3r273raZmZnYtm0bxo8fD41GU7MTUxjblewJ85kqwrwgMow1Qmph6Vy9X7169SAi+PDDD8s9x1wlIiIiIiIiIiIiazh+/Dg0Gk2VP0OGDFE6VCKbxBoiqjnWkbJUufgzLy8PP/30E06dOoXCwkIAQMuWLTF9+nRMnz4dt27dMmo/JSUlSExMxM2bN82aYNOmTUP79u0xduxYAHfuNJSWloakpCScPn3abMcxN7Yr2TtbzmdSDvOCyDDWCKkFc5WIiIiIiIiISDmTJk3C8uXLkZ2djebNmyMhIUHpkGwW24rMKTQ0VHdjBUM/q1evVjpUIj22MhY6Yg3ZStuT/XDEOrIlqlz8mZWVhV69eiEkJASvvPKK7vF3330XUVFRGDJkCLKzs6vcz44dO/Dtt99i06ZN8PT0NEts8+bNw6FDh7Bx40a4uLgAANatW4fAwEB069YNP/74o1mOYwlsV3IEtprPpCzmBZFhrBFSC+YqEREREREREZEyZs6ciYKCAogIzp49i8jISKVDsllsKyIijoVKYtsT2RfVLf78/PPP9VYFr1q1Su/52NhYjB07FrNmzapyX0899RS+/vprNGzY0CyxrVu3DgUFBdixYwdq166te7x///56MV+7ds0sxzMntis5ElvMZ1Ie84LIMNYIqQVzlYiIiIiIiIiIiIiIiIgcgVbpACzhmWeewTPPPGP14/br1w/9+vWz+nGthe1K9oT5TBVhXhAZxhohtWCuEhEREREREREREREREZG9U92dP4mIiIiIiIiIiIiIiIiIiIiIiIiIHBkXfxIRERERERERERERERERERERERERqYhdfu07ERERERERkbklJycjKipK6TCIiIiIiGosOTkZ4eHhSodRI7w+p+pi/hM5rri4OKxdu1bpMIgUwfwntUtNTVU6BLPgNRxVh6H8550/iYiIiIiIiIiIyOoSEhLs5o17IiIipXA+JSovNTUVCQkJSodBZJNYH0Q1x+svoppJTk5GcnKy0mHYDd75k4iIiIiIiMgI4eHh/Ot4IiIz0mg0GD9+PAYNGqR0KEREDsce7jbD6/M7OJ+ajvlv/9asWYPBgwezjcxMo9EoHUKNcbxkfVQX85/uxesvZZSNX2rH8ffu9TjbwniG8t9qiz8TEhLsYkK0RYMHD7aLAY5sH+uYKsNxiOwVxzxSC+YqqUVkZKTSIRARERERERERERERERHZBass/nzjjTfs4q/oiBwZ65iIHElERATi4+OVDoOIyO40btxY6RCIiIiIiIiIiIiIiIiI7IJVFn926dIFXbp0scahiMhCWMdE5EiCgoL4VQ1ERERERERERERERERERERks5yUDoCIiIiIiIiIiIiIiIiIiIiIiIiIiIzHxZ9ERERERERERERERERERERERERERCrCxZ9ERERERERERArZuHEjfH19sX79eqVDISIiIrJrvO4iuoO1QGQc1gqRYawRIstjnZExuPiTiIiIiIiIiEghIqJ0CEREREQOgdddRHewFoiMw1ohMow1QmR5rDMyBhd/EhEREREREREppE+fPsjOzkbfvn2VDgV5eXmIiIhQOgwiIptijbGR4y85spycHNy8edMqx+J1l2VwnKy+W7duIScnx+rHZS0og7ViPmlpaVY5DmvFclgP1Zeeno7S0lKlwwDAGrF1rDPL4lykfvZUI1z8SUREREREREREWLZsGTIyMpQOg4jIplhjbOT4S44sJSUF/v7+iIqKQmJiIgoKCpQOySrsqe45TlbfsWPH4O/vj4EDB+K7775Dfn6+0iFZnb32bUVYK+YTGhqK8PBwLFmyBNeuXVM6HKuwt75lPVTfxx9/jMDAQLz55ps4cOCA0uHYDHvt75pgnVnWqFGj0Lx5c0ybNg0nTpxQOhyrsLf+tqca4eJPIiIiIiIiIiIFJCUloUmTJtBoNFi0aBEAYMmSJfDy8oKnpyfWrVuH3r17w8fHB0FBQfjmm290r124cCHc3d3h7++PkSNHolGjRnB3d0dERAT27Nmj227s2LFwdXVFw4YNdY+9/vrr8PLygkaj0X1QNm7cOEyYMAF//fUXNBoNWrZsCQDYvHkzfHx8EBsba40mISKqMRHBvHnz8OCDD8LNzQ21a9dG//79cfz4cd02NRkbOf4SmV9+fj6+//57vPDCC6hbty5efvllbN26FSUlJWY7Bq+77uI4aVsKCgqwbsUr8HwAACAASURBVN06REZGom7duvjnP/+Jn3/+2az5fy/WgvFYK7aruLgYe/fuxdixY9GgQQM888wzWLlypVnvJM1a0cd6sC0ZGRlYuHAhOnbsqNjiM9aI+bHO1EVEcO7cOcTGxiI0NBRhYWGYO3cuUlNTzXYM1pk+1ojhxiEiIiIiIiIiAyIjIyUyMlLpMMgOXbx4UQDIp59+qnts8uTJAkC2bdsm2dnZkpGRId26dRMvLy8pLCzUbRcdHS1eXl5y7Ngxyc/Pl6NHj0qnTp3E29tbLly4oNtu2LBh0qBBA73jzpkzRwDI1atXdY8NHDhQgoOD9bbbsGGDeHt7y/Tp08196kQCQOLj45UOg+zMlClTxNXVVVauXCk3btyQw4cPS4cOHaRevXqSnp6u264mYyPHX7IHtnJ9m5SUJAD0frRarQAQX19fGTFihOzcuVNKS0v1Xled+O31usvU+ZTjpO3k/549eyrNfx8fH7Pm/73stRbuFR8fLzX9GJy1Up6tXL97eHjo1Y2zs7M4OTmJi4uL9O7dW/7v//5Pbt++Xe51psZvr7VSnfpgPdhO/o8fP15cXV0rnDtatWolU6dOlb/++qvc6ywRv73WiDEs0Z6ss6qZY343l759++rVoUajERcXF9FoNNK5c2eZP3++XLlyRe811YnfXuusOtezjl4jBvJnDe/8SURERERERERkgyIiIuDj44P69etjyJAhuH37Ni5cuKC3jVar1f21c+vWrbFkyRLcvHkTy5cvN0sMffr0QU5ODt5//32z7I+IyJLy8vIwb948vPDCC3jxxRfh6+uLsLAwfP7557h27Rq+/PJLsx2L4y+R5RQXFwMAsrOzsXz5cnTr1g0BAQGIiYnB77//bpFjOsp1F8dJ21eW/zk5OfjPf/6Dbt26oVGjRoiJibHK1/s6Si1UhbWiLiUlJSgtLUVRURG2bt2K4cOHo379+vjHP/6B9evX6+rKnBypVlgPtq8sx0+fPo2ZM2eiZcuWeOSRR7BgwQLFvqLZkWrEHFhn6iciKCoqgohg3759mDBhAho1aoQnn3wSK1asMOvdqcs4Up2xRgzTmm1PRERERERERERkEa6urgCAoqIig9t17NgRnp6eel93Q0TkKI4ePYpbt26hY8eOeo936tQJrq6uel/TZW4cf0mN0tLSsHbtWkVjqOorSsuufdLT0/HZZ59h4cKFCA0NhYuLCxo3bmyRmOz5uovj5F03b95UPP9Pnz5t8PnCwkIAwJUrV3T5/8ADD1g0/+9lz7VQFdZK5ZKTk6HRaBSNQUQqfa4sX3Nzc7F69WqsWrUKdevWxYsvvmixeOy9VlgPd9lC/p85c6bS58oWnwHAvn37cODAAbz55pvo0aMHAKCgoMAqMd7P3mvEHFhnplH6Gg4AsrKyKn1ORFBSUgIA+OWXX7Bjxw6MGDECHTp0AHDnGq+sLszF3uuMNWIYF38SEREREREREdkRNzc3XL16VekwiIis7saNGwCAWrVqlXvOz8/PInfauBfHX1KbAwcOYNCgQUqHYbSyDzLLPnRLS0tDcnIywsPDFYtJbXXPcfKuS5cuqTL/yxZMp6WlYdeuXYiIiFAyLB1b6ltzYK1ULi4uDnFxcYrG4OLiYtR2ZXdDzMzMxIIFCwAA27ZtU7T2bblvK8N6uMsW8t/T09Oo7coWn2k0GmzevBkAsGzZMvTp0wd16tSxZIg1Ykv9bU2sM9PYwjVcgwYNjNqutLQUwJ3F17t37wYAvPPOO4iNjYWHh4fF4jNEbf0NsEaqwq99JyIiIiIiIiKyE0VFRbhx4waCgoKUDoWIyOr8/PwAoMI3/S09NnL8JTXq27cvRETRn6SkJKNiLbuTTcuWLTF16lT06tULTzzxhKILP9VY9xwn7woNDVU8/429Q1FZ/gcHB2Pq1Kno2bMnnnzySZtZ+GlrfWsOrJXKxcfHK147Wm3V97cq28bb2xv/+Mc/sGXLFgDAU089ZdH2McTW+7YyrIe7bCH/o6Ojq4xTo9HA2dkZTk5OeOSRR/DFF18AAEaPHm3TCz9trb+tiXVmGqXrUETQuXPnKuN0dnaGs7MzXFxc0Lt3b7z++usAgHnz5im28FON/Q2wRqrCxZ9ERERERERERHZix44dEBG9hRBarbbKr/whIrIHbdu2Ra1atbB//369x/fs2YPCwkI8/PDDusfMPTZy/CUyv7IFb/Xr18fIkSOxc+dOnDp1CtOmTavwji/Wpsa65zipHhXl/+nTpzFt2jR4e3srHJ0+e+xb1oo6lS12c3V1Rb9+/fDDDz8gMzMTK1as0H3ttZLU2resB/UoW/QcFhaGTz75BJcuXcLu3bsxYsQIhSMzjiP3N+vMfty7+LpTp05YsmQJrl27ho0bN6J79+5Kh6fa/maNGMbFn0REREREREREKlVaWorr16+juLgYhw8fxrhx49CkSRMMHz5ct03Lli2RlZWFxMREFBUV4erVqzh//ny5fdWpUwdpaWk4d+4cbt68iaKiImzatAk+Pj6IjY214lkREVWPu7s7JkyYgO+++w6rVq1CTk4OUlJSMGrUKDRq1EjvLjk1GRsBjr9ElnLvndoGDx6MLVu24MqVK1iwYAG6du2qaGz2UPccJ21b2VdZ16pVS5f/6enpNpH/93KEvmWtqEfZXdW0Wi2eeeYZLF++HFlZWUhISEDfvn2N/op4S7CXvmU92LZ7744+efJknD59Gn/88QdiYmLQsGFDhaMzjP19F+tM/crmm4oWX/v4+CgWl730N2vEMC7+JCIiIiIiIiJSwKJFi9CpUycAwMSJE9GvXz8sWbIEcXFxAICHHnoIZ86cwdKlSzFhwgQAQK9evXDq1CndPvLz8xEWFgYPDw9069YNISEh+N///gc3NzfdNqNHj8YTTzyBoUOH4oEHHsCMGTN0Xy3UpUsXXLx4EQAwatQo+Pv7o3Xr1nj22WeRlZVllXYgIjKnqVOnYubMmZg+fTrq1auHxx57DM2aNcOOHTvg5eWl266mYyPHXyLz8/T0xNChQ7Fp0yZkZWXp7tSm0WhqvG9ed93FcdI2eXh4YNCgQfjxxx/18t/Jybwf5bIWjMdasX1OTk7o3r07li5dqrur2ksvvaTXP9XFWtHHerAthYWFAICgoCC89dZbOHLkiO7u6MHBwVaJgTVifqwz9QoNDcX06dNx9uxZsy6+Zp3pY41UTiMiYpE9ExEREREREdmJqKgoAMDatWsVjoTorpEjR2Lt2rXIzMxUOhSiatFoNIiPj8egQYOUDoXIJBx/yR7YyvXtvn37MGvWLAwdOhTPPfec7gOzqlg7fluue1ucT225vQDbyf9Dhw5h2rRpGDp0KJ5//nmbzf972XrfllmzZg0GDx4MW/8YXC3tWcZWxpunn34affv2xaBBg0xaXGPN+G25b221Pmy5zQDbyf+PPvoIly9fxtChQ/W+grgqthJ/GVvv76rYWnsaS+3tbkvj17hx4+Dl5YW///3vaNOmjVGvsXb8ttzftnI9fj9bbjMD+bNWq0RARERERERERERUcyUlJUqHQETkkDj+EplHp06d8N133ykdhlFY96Zhe1Wtffv2SExMVDoMk7FvzYvtabotW7YoHYJR2LemY5tV7Z133lE6BLNhfyuD7W4e8+fPVzoEo7C/TafGNuPXvhMRERERERERERERERERERERERERqQgXfxIRERERERERqcykSZOwfPlyZGdno3nz5khISFA6JCIih8Dxl8jxsO5Nw/ayX+xb82J72i/2renYZo6F/a0MtrtjYX+bTs1txq99JyIiIiIiIiJSmZkzZ2LmzJlKh0FE5HA4/hI5Hta9adhe9ot9a15sT/vFvjUd28yxsL+VwXZ3LOxv06m5zXjnTyIiIiIiIiIiIiIiIiIiIiIiIiIiFeHiTyIiIiIiIiIiIiIiIiIiIiIiIiIiFSn3te+7d+/GvHnzlIiFyO516dIFb7zxhtJhVMu8efOwe/dupcMgIpVZu3at0iFUC6+HiIgsQ83Xw0RERERERERERERERES2pNydPy9evIiEhAQlYiGya8nJyapePLl7924kJycrHQYRqURqaqqqryd4PUREZH5qvx4mIiIiIiIiIiIiIiIisiXl7vxZRq136iKyVVFRUUqHUGPh4eEcG4jIKGvWrMHgwYOVDqPGOOYREZmPPVwPExEREREREREREREREdmKShd/EhEREREREdFdCQkJ0Gg0SodBRGRXBg8ebBd/OEZEpEaRkZFKh1AjvD6/i/Op6Zj/joFtRPfjeHkX68PxMP/Ni+1J1cXx9y62hXlw8ScRERERERGREcLDwzF+/HilwyAiIiIiI8TFxQEAr98qUdY+asbr88ox/w1j/juuwYMHY9y4cejSpYvSoaiSPSxyYv9XjvVhGPOfqsLrL8vbvXs35s+fr3QYNRYfH690CKpQ1t9srzsM5T8XfxIREREREREZISgoCIMGDVI6DCIiIiIywtq1awGA12+VKGsfNeP1eeWY/4Yx/x3X4MGD0aVLF7ZdNdnD4jf2f+VYH4Yx/6kqvP6yDntY/MkcMd78+fPZXveoLP+drBwHERERERERERERERERERERERERERHVABd/EhERERERERERERERERERERERERGpSI0Xf3777bdo0aIFNBoNNBoN3n//fYPbz5s3DxqNBk5OTggNDcWvv/5a0xCqbePGjfD19cX69evNts8//vgDQ4YMQfPmzeHm5oZ69eqhXbt2+PDDDy1+bGMkJyfjwQcfhJOTEzQaDRo0aFAuNqXdn1MNGzbEiy++qHRYpCCl6uV+c+fOhb+/PzQaDT7//HOLHGPWrFnw9fWFRqPBoUOHLHIMc8vPz0doaCjee++9au/D2LHTFJbOG6XHKjXmCpFavPbaa/D29i5XX7YyH1XEHGMxAJw4cQJjxoxBmzZt4O3tDa1WC19fX4SEhKBPnz7YvXu3mSK2ffeP8xX9NGvWTOkw9agxd4mIiIiIiIiIiIiIiIioemq8+HPgwIE4c+YMgoODAQBfffUVioqKKty2pKQECxcuBAA8+eSTOH78OLp3717TEKpNRMy6v5SUFERERKBhw4b43//+h+zsbOzatQu9evXCjh07LHpsY4WHh+PPP//EM888A+DOB/w1XSRgbvfmlK+vL9LT07Fq1SqlwyIFKVUv93vzzTexa9cuix7j3XffxRdffGHRY5jb5MmTceLEiWq/3pSx0xSWzhulxyo15gqRWnz11VdYunRpucdtZT6qSE3HYgBYtmwZwsLCcPjwYcybNw8XL17E7du3cfDgQcyYMQM3btxASkqKmSK2ffeP8yICEUFxcTFyc3Nx5coVeHp6Kh2mHjXmLhERERERERERERERERFVj9acO3v44Ydx4MABJCYmIioqqtzz3377LQIDA3H+/HmT952Xl4ennnrKrAuv+vTpg+zsbLMdZ+7cufDz88P8+fN1j4WEhGDGjBkYOHBglcd2VJboW7J9pvQ768V27dq1C0eOHKnRPkwZO5k3ZM84H9o+Wx1XzDEWJycnIzo6Go899hh++uknaLV3f01o0aIFWrRoAT8/P5w6dcrofdprTjs7O8PDwwMeHh4ICQlROhyj2GruEhEREREREREREREREVH11fjOn/caPXo0AOCzzz6r8Pl58+ZhwoQJ1dr3smXLkJGRUe3YrHGczMxMZGdnIysrS+9xV1dXfsWiAdbqW7ItSva7iGDt2rX48ssvFTm+vcjLy8Nbb72lt2izOkwZO5k3ZM/Mld/MVfPQaDQWP4Y5+spcY/GHH36IkpISzJo1S2/h57169uyJf/3rX0bv0xFyOjExUekQylFL7jqKkSNHQqPR6H5efPHFctts3boV7777LkpLSzFgwAA0adIE7u7uCAwMRL9+/XD48OFqH7+0tBRxcXGIiIgo99wPP/yA2bNno6SkpNr7vxfPw3j5+fkIDQ3V+xYONZzHhx9+qJfPZT9t27bleShwHvdjXvE8eB48D3s8j8TERL3X1KtXr8bnaAql2qNMUlISHn30UXh6eqJRo0aYOHEiCgoKdM+bu/8dDfvXMEu0z+zZsxEaGgoPDw94eXkhNDQU77//PnJycvS2mz59Olq3bg0fHx+4ubmhZcuWePvtt3Hr1i3dNkq3jz1hX1cf286xsL8Ns9TvvUVFRZg5cyZatmwJV1dX+Pn5oW3btjh37lylr7HG78dUHnPA8tjGVIa5YDp7+fyiUnKf+Ph4qeDhKgUHB8vZs2flwQcfFABy/PhxveeTkpIkLCxMbt68KQDkqaee0nv+119/lQcffFB8fHzEzc1N2rZtK5s3bxYRkZiYGHF1dRUAAkCCg4NlzJgx4uLiIg0aNNDtY/To0eLp6SkA5OrVqyIiMnv2bPHw8JBatWrJlStX5I033pCAgAD56quvpHHjxgJAPv3000qP8+qrr+r+3aJFC/n9999FRGT48OHi4eEhPj4+sm7dOhERmTZtmgCQdu3aSVJSUqVttXPnznLHPnXqlO449//8/PPPIiJSXFws77//vjRu3Fjc3d0lLCxMVq9erdvvpk2bxNvbWz788MMq+6tnz54CQK5fvy4iIosXLxZPT0/x8PCQxMRE6dWrl3h7e0tgYKD897//1b1uwYIF4ubmJvXr15fo6Ghp2LChuLm5SZcuXSQ5OVm3nbH9U1GblwkODhZfX98qz0XEcP6Y0oeG2riyXLo/1ysTGRkpkZGRRm1ri6oT/44dO6RTp07i4eEh3t7e0rZtW8nOzq6w302pVWPzVeROn8bGxkpISIi4u7tL3bp1pWnTptK+fXtd/puirFY/++wz3WOlpaXyySefSGhoqLi6uoqfn5/069dP/vzzT73XGrvdN998IwDk4MGDIiKSnp4uTZs2FWdnZ+nZs6eIGF9jxtZsdYwfP16+/vpruXr1qgCQyZMn6z1v7Jhk7Nhpq3ljyljlSLlS3esJW1Hd+FesWCEPP/ywuLm5iaenpzRt2lSmT58uIqZf64hUPfcbm6vG5FRl9dS1a1ej51FjGTovU2q1qjY3peY+/vhjCQkJEVdXV/Hx8dGNIWX1VdH1m5LzURlzjMUFBQW6mEzhKDlt7DjP3K2aI14PR0dHS506dWTTpk1y4sQJyc/P13t+ypQp0rdvX8nJyZGioiKpW7eu7Ny5U27fvi1nzpyRp59+Wnx9feXSpUsmx3vy5El59NFHdddZFZk/f7489thjNRqHeB6me+ONNyocs239PGbMmFHhexZt2rTheShwHvdjXvE8eB48D3s8j9LSUklNTZVff/1Vnn32WZN/Z6nJ9afS7XHkyBHx8PCQ999/X27duiW7du2SevXqycsvv6y3XU363xGvz8uwfw2zVPv06dNH5s6dKxkZGXLz5k1Zs2aNuLi4yNNPP6233WOPPSaLFy+WzMxMycnJkfj4eHFxcZFevXrpbcf8r3n8jtDX9wMg8fHxNd6PI7adiPnaTynVjd9R+tvW2kdEZMCAAfLAAw9IcnKyFBUVSVpamjz//POSkpJS6Wss9fuxo+a/MRwlB6piyesLtvEdjvr5870cKRfM1d/28vmFgfZYY/bFnwsWLBAAMm7cOL3nBwwYIMuXL6908efatWtl2rRpkpWVJZmZmRIeHq73Zs7AgQP1FgaKiAwbNkxvMYuIyJw5c/QWs4iITJ48WQBITEyMfPrpp/LCCy/In3/+KRcvXtT7ELSy4wwcOFCcnZ3LdfTf//53+eGHH3T/zs3NlY4dO+p+oW/durXMnj1bMjMzy7XX/cc+deqUvPPOO3L79m0REbl8+bLUrl1bIiIipKSkRERE3nzzTXFzc5OEhAS5fv26TJo0SZycnGTfvn0iIrJhwwbx9vbWfWhsyP2LP+9tp23btkl2drZkZGRIt27dxMvLSwoLC3XbRUdHi5eXlxw7dkzy8/Pl6NGj0qlTJ/H29pYLFy7otjO2fypqcxHTFlQZkz/G9GFVbVxZLhnD0d5MuHXrlvj4+Mjs2bMlLy9P0tPT5YUXXtD1fUX9bkqtGpuvsbGx4uzsLOvWrZPc3Fw5cOCANGjQQB5//PFqtUNFiz+nTJkirq6usnLlSrlx44YcPnxYOnToIPXq1ZP09HSTt7t/QV9hYaEMHDiw3OIqY2vM2Jo1RVJSkjz//PMiIpUuODJ2TDJl7LTFvDFlrHKkXHHEi++4uDgBILNmzZLMzEzJysqSL774QoYNGyYi1bvWqWpeMjZXjc2pyurJ2HnUWMbOt1XValVtbsp5azQa+eSTT+T69euSm5srixcv1qsvkfLXb6bEau75SMR8Y/HJkycFgISHh5t0fEfJ6YrG+ZiYmAp/2WXuGuZo18Mid+bWwMDACp+bNWuWhISESF5enoiIFBUVyXPPPae3zd69ewWAxMbGmnTcQ4cOyQsvvCCrVq2S9u3bV/qmg4jI2LFjpUuXLlJUVGTSMcrwPEzz22+/yTPPPFPhmC1i2+cxY8YMWblypVHb8jzuYF5VzV76g+dhOp5H1Xge+mJiYqy2+NMW2mPw4MHSvHlzKS0t1T02Z84c0Wg05d6Prm7/O+L1uQj7tyqWbJ8BAwbo9lsmKipKAEhaWprusT59+khxcbHedoMGDRIA5d6jZP5Xn6P09f3MsfjJUdtOxDEXvzlSf9ta+3zzzTei0Wjk8OHDRr/Gkr8fO2L+G8ORcqAqlrq+YBvf5YifP9/L0XLBHP1tL59fiFh58eeNGzfEy8tLateuLbm5uSIi8tdff0lQUJAUFBRUuvjzfjNnzhQAkpGRISLmWfx5/8WTsYs/t27dKgD07piUnZ0trVq1KnehVVhYKAsWLJDQ0FDdQiZ/f3/ZsWNHlce+14ABA8Td3V13V8m8vDzx9PSUIUOG6LbJzc0VNzc3GT16dIX7MMTQ4s9726nsw+PTp0/rHouOji73Afi+ffsEgHzwwQe6x6y5+PN+9+ePMX1oTBtXlkvGcLQ3E44cOSIAZMOGDRU+b2gRnzG1amy+durUSTp37qy3vxEjRoiTk5MUFBQYfT5l7l/8mZubK7Vq1dLLG5G7E0TZYhtjtxPRX9BXVFQkQ4cOlU2bNpWLxZQFfcbUrLHKFmumpqaKSOULjkxh7Nhpi3lj7FjlaLniaBffhYWF4ufnJ0888YTe48XFxTJ//vwKX1PVtY4x85IxuWpKTlVWT6ZcC1WluvPt/bVaVZubUnOenp7l/pr6/sXVIrY1H5lzLN6/f78AkB49epj82nvZa04HBwfr5qZ7fwwt/mTuVszRrofl/2PvzuOiqv7/gb8GZlgVBUFFEJVcCrVcc8Os3BW3FNAswx1XXD6FSxZqkKbfcEX7CB8NTVncwcwFM+Ujmllu+FFRNEVkUcQNkIG5vz/8MYkMwwzMyryejweP7M65977POe977p2ZM/cK5U/+TElJEcRisbBjxw6l6z948EAAIIwbN06t/b6qU6dOSj90yMnJEaytrYUVK1aovW3WQz15eXlC165dhStXrpQ7ZhtyPdSZvMN6MK9UVV36g/VQD+uhGtajNF1N/jSE9pBKpUKNGjUEPz+/UstLPm9dtmxZqeWV7X9TvD5n/yqny+v7ErNmzRIACNevX1daburUqQJQ9qmDzP/KMaW+fl1VJz+ZctsJgulNfjO1/ja09nnvvfeE9u3bq1xe2++PTS3/VWFqOVARbVxfsI1LM7Xvn19lirlQ1f6uLt9flFA2+dMMGlarVi18/PHHePToEaKiogAAoaGhmDp1KiwsLFTejkQiAQDtP/deBR9++CGaN2+O//znPxAEAQAQFRWFkSNHwtzcvFRZiUSCmTNn4n//+x9Onz6NoUOHIisrC97e3nj06JFK+4uJicGePXuwePFitGjRAgBw7do15OXloVWrVvJy1tbWqF+/Pq5evaqhmpZV0mdSqVRpuQ4dOsDGxkarsajj9fxRpQ/11cbVlbu7O+rWrYtPPvkEQUFBuH37ttb3qShfCwoK5H1eori4GBKJpMzxWxnJycl49uwZOnToUGp5x44dYWFhgTNnzqhV7vU4P/74Y9StWxf9+vWrcqyvqsoxu2DBAkyaNAkuLi4ai0cTY2dl6SpvTDFXTMnFixeRm5uLvn37llpubm6OgIAAhetUdK2jynlJlVytTE69Tp1roYpU9nz7+rFaUZurWu8bN24gLy8PPXv2VKseyuhiXNHkWFyjRg0AQF5eXpW2U51zulatWhAEQf5X3nGtCHOXFFmzZg0EQcDgwYOVlsvPzwcA2NnZaS0We3t79OjRA6tWrSrT1xVhPdSzcOFCTJs2DU5OTuWWMYZ6qIL1YF5pA+vBemgD61F96qEphtAeqampePbsGdzc3Eotf+ONNwC8fE/xKkNoN2PB/lVOH+2TkpKC2rVro1GjRkrL3bt3D9bW1mjSpEmp5cz/ymFfVx7bzrSwv5XTZvsUFhbi9OnTaNOmjcrraPv9MZXFHNA+tjGVYC6ozxDe/5XQdltofPInAEydOhUAsHHjRuTm5iI2Nhb+/v5K1zlw4ADef/99ODk5wdLSEl988YU2QqsUkUgEf39/pKamIiEhAQAQGRmJ8ePHK12vU6dO2LNnD6ZMmYLs7Gz8+uuvFe7r4cOHmDFjBjp27Ii5c+fKlz9//hwA8OWXX0IkEsn//v777yp/Ua8plpaWyM7O1su+K8ofVfrQGNrYmFhbW+PYsWPw9PREcHAw3N3dMXLkSPnAqSsDBgzAuXPnsG/fPuTn5+OPP/7A3r174eXlpZEJC7m5uQD+mTjzqtq1a+Pp06dqlXvV9OnTkZKSgo0bN+LKlStVjvV1lTlmExMTcenSJUyYMEHj8ZSozNipadrIG1PLFVPz5MkTAC/7qDzqXuuocl5SJVcrk1Ovq+y1UGXrpYqK2lzVeqelpQGA0jcnmqDJcUXTY3Hjxo1hZWWF69evq7WeKef0gZgKwQAAIABJREFUqlWrSk1iVYcp5y7948CBA2jRogVsbGyUlvv9998BAJ6enlqNp23btrh37x4uXLig1nqsh+r++9//4ubNm/j4448rLGvI9Zg/fz7s7e1hYWGBJk2aYOjQoTh79qzCsqwH80pV1aU/WA/VsR6qYz10zxDaIyMjAwBQs2bNUutZWVnB2toamZmZZbap73YzFuxf5XR1fS+VSnHv3j2sW7cOR48exdq1a5XePCYvLw/Hjh3DxIkTFZZj/quPfV15bDvTwv5WTpvtk56ejsLCQpw7dw4ffPABnJ2dYWVlhbfeegvr168vM3FGF++PqSzmgPaxjakEc0F91eX7C1VoZfJnmzZt0LlzZ/z++++YPHkyvL29YW9vX275O3fuYNiwYahfvz7OnDmDx48fY/ny5doIrdL8/PxgZWWF8PBwXLt2DXZ2dmV+cTN8+HAUFRWVWffTTz8FoNrdlAICApCbm4vNmzeX+jK15Evd0NDQUncdEgQBSUlJVamaRkilUuTm5sLV1VUn+ztx4gRCQ0MBqJ4/FfWhobexMWrZsiXi4uKQnp6OwMBAREdHY+XKlTqNISgoCB9++CH8/PxgZ2eHjz76CD4+Pti0aZNGtl8ycUPRRJNXjwlVy73Kx8cHR44cQe3atTFmzBiF40tlVfaYjYiIQEJCAszMzOSTdkqOneDgYIhEIvzxxx9qbVMTY6emaSpvXh2rTC1XTE2DBg0AAA8ePFD4emWudVQ5L6mSq5XJKUVUuRZShabOtxW1uar1trKyAgC8ePFC9UpUgibPR5oeiy0tLdG3b188ePAA//3vf8stl5OTI59wypyuPFPOXXrp+fPnuHXrlvzOPopkZmYiKioKAQEB6NKlS4W/TK2qZs2aAQAuXbqk8jqsh+ry8/Mxa9YshIWFqVTeUOvx2WefYf/+/bh79y6ePXuGHTt24M6dO+jRoweSk5NZDx3Xg3nFerAerAfroXmG0h4l1/iKfmwlkUgU/rhen+1mLNi/yuny+r5hw4ZwdXVFUFAQvvvuO/j6+iotHxISAmdnZ3zzzTcKX2f+q4d9XXlsO9PC/lZO2+3z7NkzAC8/Uw4ODkZycjIyMzMxdOhQTJ8+Hdu3b5eX1cX7YyqLOaB9bGMqwVxQX3X5/kJVWpn8Cfxz98+dO3di9uzZSsteunQJUqkUU6dOhbu7O6ysrCASiSrch1gsrvBx5Jpib28PX19f7N27FytXrsTEiRPLlHnx4oXCO65du3YNAPD2228r3ceBAwfw008/YdGiRWjZsqV8+eeff46GDRvCysoK58+fr2JNtOP48eMQBAGdO3eWL9Nm/5w7dw62trYAVM+fivrQ0NvY2KSnp8uPBycnJ3z77bdo166dVu5KqExycjJu3ryJ7OxsSKVS3LlzB2FhYUonpKujVatWqFGjRplJNmfOnEFhYSHat2+vVrlXffDBB3B0dMS///1vnDt3rsybuKocY4qOWVVs3ry5zISdkjtCLly4EIIglHlMbUWqOnZqg6by5tWxytRyxdQ0btwYDg4OOHz4sMLXK3Oto8p5SZVcrUxOKaLKtZAqNHW+rajN1TnmzMzM8Ntvv1Upnopo8nykjbE4KCgIlpaWmDNnTrl36b58+TLEYjEA5nSJ+/fvY+zYsWqtY8q5Sy9lZWVBEASlvzbt0qULAgICMHToUBw8eBASiUSrMZXEouguQ+VhPVS3YMECTJo0CS4uLiqVN9R6NGzYEG3btkWNGjVgYWGBzp07Y/PmzcjPz8f69etZDx3Xg3nFerAerAfroXmG0h4lP/RS9OPewsJCWFtbl1muz3YzFuxf5XR5fX/37l1kZWVh+/bt+PHHH9G2bVtkZWUpLLt7927ExMTg0KFDZe6WWoL5rx72deWx7UwL+1s5bbePpaUlgJc3GuratSscHBxQq1YtLF68GLVq1cK///1veVldvD+mspgD2sc2phLMBfVVl+8vVKW1yZ8+Pj5wdHTEsGHD4O7urrSsm5sbAODo0aMoKChASkoKzpw5U6qMg4MD0tPTcfv2bTx9+hRSqRRNmzZFTk4O9u7dC6lUiuzsbPz9999VilvRfkpMmTIFL168QHx8PAYNGqRw/WHDhiEmJga5ubl4/Pgx9u3bh3nz5mHIkCFKJzA9efIE/v7+aNOmDebNmwcAKCgowB9//IHz58/DysoKY8eOxY4dOxAWFoYnT56guLgYaWlpuH//PgDg4MGDsLOzQ3BwcJXaQBUymQyPHj1CUVERLl68iFmzZsHNzQ1+fn7yMqr2j7I2f51UKkVmZiaOHz8un1ClSv6UUNaHqrQxqS49PR3+/v64evUqCgsL8ddff+Hvv/+WTyBTp9+rYvr06XBzc5P/WkHTrKysMHfuXOzevRvbtm3DkydPcOnSJUyZMgXOzs6YPHmyWuUUGTx4MPz8/BAcHIxz587Jl6szBqpyzGqaOmOSqmOnseSNorGKuVK9WVpaYsGCBThx4gRmzpyJe/fuQSaT4enTp7hy5UqlrnXMzc0rPC+pkqtVyanXqXItVBFNnW8ranNV6+3k5IThw4dj586diIiIwJMnT3Dx4sVSb2Q0Qdvno/KoOha3adMGP/30Ey5fvozu3bvj559/xuPHjyGVSnHr1i1s2rQJ48ePl7/xMfWcFgQB+fn52LVrF+zs7FReD2Du0sv3ecA/H6goUrduXRw7dgxr165FrVq1tB5TyRfMJbGpgvVQTWJiIi5duiS/c7IqDLEe5WndujXMzc1x/fr1Mq+xHsyryjK2/igP66EY61E1rId2GUp71K9fH8DL7wxelZeXh4KCAjg7O5fZhj7bzViwf5XTZftIJBI4OTmhT58+iIqKQnJyMkJCQsqUi4qKwrJly3D8+HE0bty43O0x/9XDvq48tp1pYX8rp+32KTkfvv70JAsLCzRq1Ag3b94EoLv3x1QWc0D72MZUgrmgvury/YWqqjz5c8+ePWjatClu3ryJjh07YsaMGQBeNuC4ceMwd+5cedlFixbJb2P666+/omXLlkhMTETr1q0RGBiI9evXw9nZGQsXLsT7778PAPD09MTdu3cxZcoU1K1bFx4eHhgwYABycnIwdepUfPDBBxg1ahRatGiBpUuXyhurS5cuuHv3Lr777jt8//33AIDmzZtj27ZtAIB169ahY8eOAIDAwEAMGTIEABTup0SnTp3Qtm1bjB07Vn7Xo1cFBASgY8eOWLBgAerXr4+6desiMDAQU6ZMQXR0tLycon1v2rQJaWlpOH/+PCQSCUQiEaytrdGxY0dYWFgAAFatWoXZs2dj+fLlqFOnDpydnTFr1iw8evRI5f46c+YMWrVqhSNHjgAA3nrrLYSEhCAsLEz+aOK3334bqamp2LRpk7z/+vXrh5SUFPl2CgoK0Lp1a1hbW6N79+5o3rw5fv3111IHjir9o6jNIyIi5Dn1+PFj+eNMRSIRLCwsUL9+fezfv18+K1qV/FG1D5W1cXm5RIo5OTmhuLgYXbt2hY2NDby8vODv74/p06cDKNvv8+bNU/lYVSdfQ0JCcPnyZdjb25fKIw8PD+zevVutOn3//ffw9PQEAPzrX//C8OHDAQBff/01QkJCsGTJEjg6OqJHjx5o3LhxqYl/qpbbvXu3/M7Jw4YNQ3Z2Np4+fYqEhAQUFRXh/fffx9atWwGofowBqh2z+qLq2AkYVt68ev5TZawCmCvV3dy5c7Fu3TocP34cTZs2ha2tLXr06IHjx49X+lqnonO/qmOcKjmlynmuovOoqpTVS51jVVmbq1pvAPjPf/6DsWPHIjAwEC4uLpg2bRq6d+8OABg0aBAuXrxoUOcjbRk+fDiuXr2KDz74APPmzYOrqyusra3Rrl07bNiwAT169MCoUaMAqHb9Zew5rWycNzMzg42NDWbMmCGf/MncNR5hYWH4/PPPsX///lLv93Sl5BxcXFxcbhknJyfUrl1bVyGhsLAQwD+xqYL1UE1ERAQSEhJgZmYmP4acnJwAAMHBwRCJRGXu9GuI9SiPTCaDTCZTeK3IejCvKsvY+qM8rIdirEfVsB7aZSjt0aRJE9SsWbPMD3dv3LgBQPFTcvTZbsaC/aucvtqnadOmMDc3R3Jycqnla9euxbZt23Ds2DE0aNBA6TaY/+phX1ce2860sL+V03b71KhRA82aNVP45MCioiL5JB1dvT+mspgD2sc2phLMBfVVl+8vVCa8Jjo6WlCwmP6/AQMGCKmpqfoOQ68mT54sODg46DuMStNXH44YMUIYMWKEzverKcYa//r164VZs2aVWvbixQth9uzZgqWlpZCXl6enyHTH2I9ZfTDVvNFkrhj79YSxxK+PXOW1UOWY6riiLua04dFknxjK9WRwcLAAQAAgiEQioVmzZsKUKVOEn376Sbh7926561Um/smTJwsuLi6llj1//lwQiUSCl5dXpeJXV6dOnYR33nlHaZnw8HABgLB161aVt8t6VF52drYAQFi4cKHC1w21Hn369Cmz7NSpUwIAYenSpWVeYz2YV6qoLv3BerAe2sB6lK5HQECAUKdOHbX2re71myG1h6+vr9CoUSOhuLhYvmzZsmWCSCQSrl69WmYblel/Q7k+ryz2r3KG1j4PHjwQRo0aVWb5tWvXBADC2LFjBUEQBJlMJnzxxRfCxIkTBalUqtK2mf/qMbW+fh0AITo6ulLrmnrbCULV2s8QqBO/Kfa3IbWPIAjCl19+KYhEIuHmzZul9mtrayv4+vqWu5423h8LgmnlvypMMQcqounrC7ZxWcby/W15Khu/qeZCVfq7unx/8Sol7RGjtce+VxevPlL44sWLsLKyQpMmTfQYkWFQNjva0LAPTVdGRgZmzpyJ8ePHl1puYWEBNzc3SKVSrT023NAY0zGrb6aeN8wV46GrXOV5tOpMfVxRFXPa8FTX3HVxcYGZ2cu3woIgICUlBREREfj000/RsGFDODo6YsSIEVi9ejXOnTsHQRA0un8bGxu4u7sjLS1N4es3btxAvXr14OvrW+a1kSNHol69evjzzz81GlNJLK1bt1Z5P6yH6dXj3r17iIqKQm5uLqRSKZKSkjBhwgS4ublhypQprIeO66EuQ61HdekP1oP1YD20Vw9dMqT2WLRoETIzM/H111/j+fPnSEpKwooVK+Dn54cWLVqU2a4+281YsH+V03b72Nra4vDhwzh27BiePHkCqVSKv/76C5999hlsbW0xZ84cAMCVK1fw3XffYdOmTfKn5L36t3LlyjLbZv6rh31deWw708L+Vk4X59U5c+agUaNG8PPzw507d/Dw4UMEBgYiPz8f8+bNq3TsPB40gzmgfWxjKsFcUJ8xfD6rSZz8WYHAwECkpKTg+vXrGDt2LJYuXarvkEhN7EPTZW1tDYlEgoiICGRmZkIqlSI9PR3h4eH46quvMHLkSKSnp5d5o6Tob+TIkfqujtZcvXrV5NvgVarkTckjfon0SVe5qsp5lOOIcjwfqcaQcppeqq7nxAYNGkAmk5VaVlhYKF/28OFD7N27F3PnzkWHDh1gb2+PwYMHIyUlBY8ePUJRUVGVYxg4cCCSk5ORn59f5jVlk00LCwuRlZWFffv2Kd3+6dOn4enpiQYNGuDMmTO4cOECnJ2d0a1bN5w4caJM+bNnz8LFxUX+iElV98N6qLZ9dRlqPfr164cvv/wSrq6usLGxgY+PD7p164bTp0+jTp06rIeO66EuQ61HdekP1oP1YD20Vw9dM5T2aNmyJQ4dOoTDhw+jTp06GD58OMaNG4cNGzYo3K6+281YsH+V02b7WFlZoVu3bpgwYQJcXFxQs2ZNeHt7o3Hjxjh9+jRatWpV4X7Kw/xXH/u68th2poX9rZy2z6v29vY4efIkXF1d0aZNG7i4uOD333/HgQMH0KZNm0rHzeNBc5gD2sc2phLMBfUZ+vcXGqXGbUJN0sKFCwUzMzOhYcOGwv79+/Udjt7Nnz9fsLCwEAAIjRs3FmJjY/UdUoUMpQ9N+TEi+nTixAmhV69egp2dnWBubi7UqlVL6Nq1q7B+/XqVH49gzIzxmDUEppg3ms4VY7+eMJb4dZGrhnIeNXamOK5UBnPa8GiyTwzlevLy5cvyx76r++fg4CAcPnxY5X0peuy7IAhCSkqKIBaL1X68R3FxsdC9e3chIiJCrfWUefDggWBlZSWsXLlS7f2wHqxHeVgP1oP1KB/rwXqwHuVTVI8SunjsuyAYVnuoSlm7KWMo1+eVxf5Vju2jnCnm/6tMqa9fhyo+9tiU204QTO+x16bW32wf5Uwt/1VhajlQEW1cX7CNSzOW72/LU5X4TTEXqtrfhtRmmjgulD32nZM/iXTE1D9MICLTYuzXE8YePxGRIdLV9WRBQYGQmpoqnDx5UoiOjhZCQ0OFf/3rX8Lo0aOF9957T2jatKnKkz0lEokAQOjUqZPQrVs3teOfPHmy4ODgIPzyyy/C9evXhRcvXshfCwkJEZo1ayY8ffpUpW0VFRUJu3btEtq0aSM8f/5crTiUmT59utC5c2ehsLCwUvthPVgPRViPl1gP1kMR1uMl1oP1UOT1eshkMuHevXvCyZMnhYEDB+pk8qcgGE57qOr1dlOVsX/ey/5Vju2jnKnm/6tMpa9fp4nJT6badoJgmpPfTKm/2T7KmWL+q8KUcqAi2rq+YBv/w9i/v61q/KaWC5rob0NpM00cF8omf4o1eRdRIiIiIiIiIm2QyWTIzMxEeno60tPTce/ePdy/fx9paWnIyMjA3bt3cf/+fTx48EC+jpmZGerVq4cGDRqgQYMGaNmyJXr27Ing4GAUFhaWuy+JRIKioiL06tULQUFBePfdd+Ht7V2puHNyctCvXz8AwOjRo7Ft2zYAwPz58/Hs2TOMHDkSP/30E2rVqqV0O8ePH8euXbtw8OBB2NjYVCqW133//fc4f/48fv75Z0gkkkrth/VgPVgP1oP1YD1YD9ZDW/XYt28fhg0bJi+j6DHx2mAI7aEqRe1GyrF/lWP7mA72deWx7UwL+1s5tg8xB7SPbUwlmAvqM4Q200VbiASh9IPsY2Ji4Ovrq/T59kSkvpIvi2NjY/UcSeUYe/xEpFvGfj1h7PETERkiZdeT+fn5uH//PtLT00v9NzU1Vf7vu3fvQiqVytexsrJCgwYN4OzsXOq/7u7u8n83bNhQ4ZvpRo0a4c6dO2WWSyQSCIKAkSNHYuHChXjzzTdVir8qDh8+jGPHjmHZsmUa3W5F9u3bhytXruCLL76Aubl5lbfHelQN66EY61E1rIdirEfVsB6KsR5Vo+l6lKjq9Zu+2kNVVW03Y/+8l/2rHNtHOVPP/1dV975+nUgkQnR0NHx8fKq8LVNrO0Cz7acPVYnfFPqb7aOcKee/KkwhByqi7esLtrHxf3+rqfhNJRc02d/V4fMOJe0Ry8mfRDrCDxOIyJQY+/WEscdPRGSIvL29kZKSgl69esnv1JmRkYG0tDTk5eXJy5VM6mzQoAFcXFzg7OwMV1dX1K9fHw0bNoSzszNcXFyq9KvLbt264dSpU/L/F4vFEIvFmDRpEj7//HO4uroqjB/g9TARERGRseD1m3LG3j7GHr+2sX2UM/b2Mfb49cnYJ2/pm7G3n7HHr21sH+WMvX2MPX5jwPOz9hn797fGHr+usb1KUzb5k499JyIiIiIiIp1ITU3Fb7/9BmdnZ7Rs2RK9evUqM7FTF4/zbNy4MZKSkmBmZoaaNWti7ty5mDZtGuzt7bW+byIiIiIiIiIiIiIiIiJN4ORPIiIiIiIi0om+ffsaxC+fS+4sGhgYiPHjx1fpLqJERERERERERERERERE+lDu5E+RSKTLOIhMwogRI/QdQpXs3LmTYwMRmRSOeUREmmUo18MzZsxASEgIJBKJvkMhIiIiIiIiIiIiIiIiqpRyJ39GR0frMg6qgK+vL2bNmoUuXbroOxSqpNDQUH2HUGWdO3fG7Nmz9R0G6UlSUhJWrVrF8wOppCRfjB3znQwJrwfJ2BnS9bCbm5u+QyAiMkqFhYWwsLBQ+FpxcTHMzMz4AyoiIiIiIiIiIiIiHSl38qePj48u46AK+Pr6okuXLuwXI2YIj7esKldXV+agiVu1ahVzgFRWHSZ/Mt/JkPB6kIxddbgeTktLQ0xMjL7DINKKixcvYtu2bbCysoK5uTns7OwgEolga2sLMzMzWFtbQyKRwMLCAhYWFpBIJLCysoJYLIaNjQ1EIhHc3d1ha2ur76oYnbS0NFy5cgUSiQQffPCB1vf3+PFj3LhxA+3bt1d5HalUivDwcPj5+cHa2rrM64IgYPPmzRg3bpwmQyUiqpK0tDQA4PVbOdLS0uDq6qrvMKqE1+flY/4rx/w3bUlJSfoOgfSI/a8c26d6Y/9qF6+/tK+65DBzRDUl/c32eklZ/pc7+ZOIiIiIiIiI/nH69Gn4+vrqOwwiqsY2btyo7xCUOn78uNLXDx06pJtAiIjUwOu38o0YMULfIVQJr88rxvYpH/PfdK1atapa3LiAKof9rxzbp3pj/+oGz89UEeaIetheFePkTyIiIiIiIqIKVIc7lxJVpHv37jh16hRkMplK5cViMezs7BAdHY1evXppOTrj9b///Q/Hjx/H8ePHcfToUeTk5EAsfvmRXFFREcRiMU6ePInOnTtrZf9SqRQ//PADvvrqKzx69AjNmjXDtWvXVHo8+59//omBAwciIyMD48ePR3h4eJkyoaGhmDNnDtzd3XHz5k1tVIGIiKgMXp+TKWP+E1WOIAj6DoFIb5j/RPrn4+PDp/uRVnDyJxERERERERERYfjw4Th9+rRKkz/NzMzQpUsXREdHw9nZWQfRGY/U1FQcPXoUJ0+exJEjR5CZmVlqsuer/xWJRPi///s/rUz8FAQBMTExCAwMRFpaGoqLiwEAs2fPVmni548//oiJEydCJpNBJBLh3XffLVMmMjISc+fOBQDUqVNHsxUgIiIiIiIiIiIiIqU4+ZOIiIiIiIiIiODl5YXZs2crLWNubg5BELBo0SIsWrQI5ubmOorO8J04cQIjRoxAdna2vF1KJlyWTPZ8lUQiwaBBgzBz5kyNx/Lf//4Xc+bMwdmzZyESieQTemvUqIFPP/1U6brFxcVYuHAhli9fDpFIJL87yOsTVOPj4zFu3Dj56/Xq1dN4PYiIiIiIiIiIiIiofJz8SURERERERERkovLy8pCQkID4+Hjs3bsXNjY2yMvLU1hWIpHAwcEBsbGx6N69u44jNXyenp5o0qQJcnJy5JM+yyMWi+Hq6orNmzdrNIbk5GQsWrQIe/bsgVgshiAI8smZEokEEydORI0aNcpd/8mTJxg5ciQOHz4M4J/HwllZWcHDw0Ne7vTp0/D29pZPKjU3N4ejo6NG60JEREREREREREREypnpO4ASP//8M2rVqoW4uDh9h0JE1QDHFCIi9XHsJCIiMg3Z2dmIjIzEoEGD4ODggGHDhiE5ORlz5syBn58fJBJJmXXMzMzQu3dvJCcnc+JnOczMzLB161aV7oYqEomwa9cu2NnZaWTfd+/excSJE/H2228jPj4eQNm7jRYVFcHf37/cbaSkpKB9+/Y4cuRImcmr7du3lz+6/tKlS+jTpw+kUql8cqi5uTkcHBw0UhciIiIiIiIiIiIiUo3BTP4s+bCYiEgTOKYQEamPYycREVH1lZqaitWrV8PT0xP169eXTwJcs2YN0tLSkJiYiMDAQIwbNw5SqVS+nlgshrm5ORYtWoS4uDjUqVNHX1UwCs2bN8eSJUtgZqb8I7cffvgBbdu2rfL+cnJyMG/ePLzxxhvYsmULZDJZqf4rIRaL0adPHzRv3lzhdn755Re0a9cOf//9d5lJoxYWFvD09ATwMo969uyJ/Pz8UhNERSIR7O3tq1wfIiIiIiIiIiIiIlKdwUz+HDhwIB4/foxBgwbpOxTk5+eja9eu+g6jWtJF27L/lLt69SpiY2ORn5+v71C0imMKaRrHL+O1Y8cOXL58Wd9hGAWOnWQKOJ4TkamQyWQ4d+4cgoKC4OHhgTfeeANLly6Fu7s7oqKikJWVhbi4OEyaNAn169eXr9euXTv5/0skEjg7OyMpKQlBQUEVTmiklz766CPUrl1b4R1UxWIxxo4di7Fjx1Z5P0VFRRg4cCCWL18OqVRaZtLm62UDAgIUvrZ69WoMHDgQeXl5CieOSqVSdOrUCVlZWejVqxcePXpUZl8ymYx3/iQiIiIiIiIiIiLSMX5qr0BERASysrL0HUa1pIu2Zf8p9/fff8PHxwd16tTBp59+il9++UXpF0RUdczJ6oHjl/EKDw9H69at8eabb+Lbb7/F7du39R0SqYDHA2kLx3Miqs4KCgpw9OhRBAQEwNXVFR06dEBkZCR69+6NI0eOICMjA5GRkfD29kaNGjUUbkMkEmH48OEAgMGDB+PSpUvo2LGjLqthtIqLixEaGoo2bdqgTp06Ze6qLhaL0bRpU6xbt04j+xOLxYiPj0eHDh0UTjR9VaNGjdC3b99SywoKCjB69GjMmTMHMpkMMplM4bqCIOCtt95Cz549kZaWpvAzhKKiIk7+JCIiIiIiIiIiItIxg5j8mZiYCDc3N4hEIvkH4GFhYbC1tYWNjQ327duH/v37w87ODq6urtixY4d83TVr1sDKygp169aFv78/nJ2dYWVlha5du+LMmTPycjNnzoSFhUWpu1lMmzYNtra2EIlEePDgAQBg1qxZmDt3Lm7evAmRSISmTZsCePn4Kzs7OwQHB+uiSQyGIAj4/vvv8dZbb8HS0hL29vYYOnQorl69Ki9TlbZl/+lPfn4+oqKi0L9/fzg6OmLatGlITEysFo/85ZhCAMcv+kfJuHbt2jV89dVXcHd3R8eOHbF27VpkZmbqOTrDwbGTDBXHcyIi5XJychAbG4sxY8agbt266N27N44ePYpJkybhjz/+kD/uvVevXhCLxSpaWqzVAAAgAElEQVRt09vbGxs2bMDOnTtRq1YtLdegekhOTka3bt0QGBiIGTNm4NKlS/jqq6/kd0sViUSQSCTYs2cPbGxsNLbfOnXq4LfffsOHH34Ic3NzhWXMzc0xZ86cMndunTNnDrZv317upM8STk5OGDduHK5du6bwzqDAy/M1J38SERERERERERER6ZjwmujoaEHBYq27e/euAEBYu3atfNnChQsFAEJCQoLw+PFjISsrS+jevbtga2srFBYWystNnjxZsLW1Fa5cuSIUFBQIycnJQseOHYWaNWsKd+7ckZcbPXq0UK9evVL7XbFihQBAyM7Oli8bPny48MYbb5QqFx8fL9SsWVNYsmSJpquuEgBCdHS0zvf71VdfCRYWFsLWrVuF3Nxc4eLFi0K7du0ER0dHISMjQ16uKm1rCv0nCIIwYsQIYcSIEXrbf4mDBw8KAMr8WVhYCAAEJycnYebMmcLJkydLrWco8auKY4rm6ev8UFkcv/TLkPLlgw8+KDPmiUQiwdzcXBCJRELnzp2FVatWCQ8ePJCvY0jx6xLHTsOmr+tBfeN4Xn0Y2/UkkSG7ffu28MMPPwheXl6CRCIRxGKx0K1bN2HVqlVCWlqavsMzKYWFhcKyZcsES0tLoW3btsK5c+dKvdayZUvBzMxMEIlEQmxsrNbikEqlQo8ePQQzM7My177W1tZCbm5umXWKi4uFH3/8UbCzsxPEYrHCzwrMzMyE+vXrK9zu63+///671upHRERERERERERERGXEGMSdPyvStWtX2NnZwcnJCSNHjsTz589x586dUmXEYrH8bkAeHh4ICwvD06dPsXnzZo3EMHDgQDx58gSLFi3SyPaMQX5+Pr7//nt89NFH+OSTT1CrVi20bt0aGzduxIMHD/Dvf/9bY/ti/+lfYWEhACA7OxsbN25E9+7d0axZMwQFBSElJUXP0WkWx5Tqj+MXVUQQBBQXF0MQBJw9exZz585F/fr1MWDAAERGRuLFixf6DtHgcOwkfeB4TkT0j+TkZCxfvhyenp5o0qQJ5syZAwAIDw/HgwcPkJiYiICAALi4uOg5UtPx119/oVOnTli8eDEWL16Ms2fPol27dvLXJRIJtm7dCpFIhJkzZ2LEiBFai+WXX37BqVOn0KlTp1LLJRIJ/Pz8FN7B1czMDGPGjMGtW7fg5+cHAGXuHmpubo6aNWtCEIQKHy3PO38SERERERERERER6ZZqz/syIBYWFgBQ7mOmSnTo0AE2NjalHgdJ6klOTsazZ8/QoUOHUss7duwICwuLUo/B1LTq2n9XrlyBj4+PXmPIyMiosEzJRNAbN24gODgYixcvRu3atdGoUSNkZGSUetypseOYUj1x/DIc+h7zAOD27dtKXy8uLpb/+8iRI/jll1/kX2wfOnQIvXr1KvcRmqaKYyfpCsdzIjJlxcXFSEpKQmxsLPbs2YO7d++iYcOG6N+/PwIDA9G3b1/5OZl0Kz8/H4sXL8bKlSvRtWtXnD9/Hs2bN1dYtm3btti6datWJ34mJSVh5MiRGDVqFLZs2YIVK1Zg3rx5EAQBRUVFmD59utL1HRwc8N1332HXrl0Qi8XIycmRXyNLpVJERETA2dkZ4eHhWL9+PQoKClBUVFRmO3Xq1NFK/YiIiIiIiIiIiIhIMaOb/KkOS0tLZGdn6zsMo5WbmwsAqFGjRpnXateujadPn2p1/+w/MjTMSePB8YvIcPB4oKrgeE5EpiYvLw8JCQmIjY1FXFwccnNz4eHhgY8//hheXl7o1q0bRCKRvsM0aSdPnsSECROQmZmJsLAwTJw4scI+GTVqlNbiuXTpEgYOHIhevXohIiICIpEIX3zxBerWrYsJEybA09MTHh4eFW4nMDAQlpaWuHDhAjZv3oygoCAUFhZCJBKhXbt2sLW1xbJly+Dv74/OnTtDJBIhIyMDEokEUqkUZmZmsLOz01o9iYiIiIiIiIiIiKisajv5UyqVIjc3F66urvoOxWjVrl0bABR+qa7ttq2u/efh4YGYmBi9xvDLL7+gf//+SstYWFigsLAQTZs2xejRozF69GgsWLAAAKrVXT/VUV1zsrri+GU49D3mAcCHH36IW7dulft6yV09RSIRevfujZEjR0IkEmHMmDHo27evrsKslng8UFVxPCciU5CdnY2DBw8iNjYWR44cQVFRETp37ox58+Zh6NChaNGihb5DJACPHz/GF198gU2bNmHgwIFISEjQ+zni5s2b6NOnD9q2bYuoqCiIxf98zOfn5wdHR0eV7mCfmJiI8PBw7NixA3Xr1kVgYCBGjhyJ6dOn4/bt27C1tZWX3b59OwoLC3H79m0cP34c33//PU6cOIGaNWvCzMxMK/UkIiIiIiIiIiIiIsWq7eTP48ePQxAEdO7cWb5MLBZX+HhS+kerVq1Qo0YN/PHHH6WWnzlzBoWFhWjfvr18mabblv2neyUTPp2cnDBq1Ch4e3vD09NT32EZDOakceH4RRURiUQwMzODTCZDx44dMXLkSHzyySfyR1UawqTV6oDHA1UVx3Miqq5SU1MRFxeH2NhYJCUlwdLSEj179sSaNWswZMgQ1KtXT98h0ivi4+MxZcoUSKVSbNmyBWPGjNF3SEhPT0fv3r3RsGFD7N27F1ZWVmXKeHl5VbidwsJC+Pv7o0+fPvD19ZUvb9SoEeLi4kr9iEoqlWLDhg2YNGkS7OzsMHjwYAwePBiXL1/G7t27NVMxIiIiIiIiIiIiIlJZtflJvkwmw6NHj1BUVISLFy9i1qxZcHNzg5+fn7xM06ZNkZOTg71790IqlSI7Oxt///13mW05ODggPT0dt2/fxtOnTyGVSnHw4EHY2dkhODhYh7XSLysrK8ydOxe7d+/Gtm3b8OTJE1y6dAlTpkyBs7MzJk+eLC9blbYF2H/6UnJXkFq1amHixIlITExEZmYmVq9ebfITP5mTxo3jF5VHLBZDJBKhffv2CA0Nxf3795GUlISAgAD5xE+qPB4PpGkcz4moupDJZDh37hyCgoLg4eGBN954A0uXLoW7uzuioqKQlZWFuLg4TJo0iRM/DUhmZibGjBmDQYMGoUuXLrh8+bJBTPzMzc3FgAEDIJFIEB8fj5o1a1Z6WytWrEBqairCwsIUvt6kSRP5v3fs2IHMzExMmzatVJlWrVrhq6++qnQMRERERERERERERFQ5BjH5c926dejYsSMAIDAwEEOGDEFYWBhCQ0MBAG+//TZSU1OxadMmzJ07FwDQr18/pKSkyLdRUFCA1q1bw9raGt27d0fz5s3x66+/wtLSUl5m6tSp+OCDDzBq1Ci0aNECS5cuhbW1NQCgS5cuuHv3LgBgypQpqFu3Ljw8PDBgwADk5OTopB0M0ddff42QkBAsWbIEjo6O6NGjBxo3bozjx4+XeuxXVduW/ad7NjY2GDVqFA4ePIgHDx5g3bp16NatG0Qikb5DqzKOKQRw/KJ/lIxrLVq0wJIlS5CamoqzZ89ixowZnFzxCo6dZKg4nhORsSooKMDRo0cREBAAV1dXdOjQAZGRkejduzeOHDmCjIwMREZGwtvbGzVq1NB3uPSa2NhYtGrVCgkJCdi7dy9iYmLg6Oio77CQl5cHLy8v5OTk4MiRI6hbt26lt3Xjxg0EBwfj66+/hru7e4XlV61aBR8fHzRs2LDS+yQiIiIiIiIiIiIizREJgiC8uiAmJga+vr54bbFB8/f3R2xsLB4+fKjvULRGJBIhOjoaPj4++g5F40yh/wDA29sbwMsvkPTp6tWruHTpEry8vOSTFVRhKPHrgqnkpLqM8fygbcyV8hlSvuzYsQOtW7dGq1atVF7HkOI3FjwetK86Xw/qG/NXN0zpepJMV05ODhISEhAXF4e9e/fi6dOn8PDwgLe3NwYNGoT27dvrO0SqQHp6OqZOnYr9+/dj4sSJWLlyZZXurKlJhYWFGDJkCM6dO4cTJ07gzTffrNL2+vTpg/v37+PPP/+ERCJRWvbXX3/Fhx9+iDNnzuDdd9+t0n6JiIiIiIiIiIiISCNixfqOQFOKi4v1HQJVAftPd958880qf0FkCpiTpCrmiuEbNWqUvkMwGTweyJgxf4mosm7fvo3Dhw8jLi4Ohw4dgiAI6NSpE5YuXYoRI0bAxcVF3yGSCgRBwKZNm/Cvf/0L9erVw7Fjx/D+++/rOyw5mUyGTz/9FKdOncKvv/5a5ff1P/30ExISEnDy5MkKJ34CQGhoKN577z1O/CQiIiIiIiIiIiIyINVm8icRERERERERkS4kJycjNjYW8fHx+PPPP1G7dm306tUL4eHhGDJkCGrVqqXvEEkNN27cwMSJE5GYmIi5c+di8eLFsLS01HdYcoIgYMqUKYiLi8Mvv/yCdu3aVWl7jx49wty5czF58mR07dq1wvIpKSk4cOAAdu3aVaX9EhEREREREREREZFmmek7gKpasGABNm/ejMePH6NJkybYuXOnvkMiNbD/yNAwJ0lVzBWif/B4IGPG/CUiVRQXFyMxMREBAQFwc3NDq1atsHnzZrRv3x779u1DRkYGYmJiMGbMGE78NCJFRUVYvnw5WrVqhUePHuH06dNYtmyZQU38BID58+cjIiIC27Ztw3vvvVfl7QUGBkIkEiE4OFil8qGhoWjUqBEGDRpU5X0TERERERERERERkeYY/Z0/Q0JCEBISou8wqJLYf2RomJOkKuYK0T94PJAxY/4SUXny8vKQkJCA2NhYxMXFITc3Fx4eHvj444/h5eWFbt26QSQS6TtMqqQLFy5g/PjxuHLlCubNm4eFCxeq9PhzXVuzZg2+++47hIeH46OPPqry9hITExEeHo4dO3bA3t6+wvKPHj1CZGQkvv32W5ibm1d5/0RERERERERERESkOUY/+ZOIiIiIiIiISBOys7Nx8OBBxMbG4siRIygqKkLnzp0xb948DBs2DM2bN9d3iFRF+fn5WL58OUJCQtCpUyf8+eefePPNN/UdlkKRkZGYNWsWVq5ciXHjxlV5e4WFhfD390efPn3g6+ur0jobNmyARCLB2LFjq7x/IiIiIiIiIiIiItIsTv4kIiIiIiIiIpOVmpqKuLg4xMbG4tSpU7CyskLPnj2xZs0aDBkyBPXq1dN3iKQhiYmJmDhxItLT07FixQrMmDEDZmZm+g5Lof3792P8+PFYtGgR5syZo5Ftfvfdd7h16xb279+vUnmpVIoNGzZg0qRJqFGjhkZiICIiIiIiIiIiIiLN4eRPIiIiIiIiIjIZMpkMf/31F+Li4hAdHY2rV6/C0dER/fv3R0BAAPr378+JbtXMkydPsGjRIqxbtw79+vXD4cOH0bBhQ32HVa6EhAT4+Phg0qRJWLx4sUa2eePGDYSEhCAoKAju7u4qrRMVFYWMjAxMmzZNIzEQERERERERERERkWZx8icRERERERERVWsFBQVITEyU3+Hz/v37cHd3h5eXF9auXYv3338fYjE/IqmOfv75Z/j7++PZs2fyu1gasqSkJAwdOhTDhw/H2rVrNbbdqVOnomnTppg9e7bK66xduxY+Pj5wc3PTWBxEREREREREREREpDnlfrMRExOjyzhIBUlJSfoOgaogLS0Nrq6u+g6jStLS0jg2mLCSMYg5QKqoLucs5jsZmupybJFpqg7Xw2RccnJykJCQgLi4OOzduxfPnz9H27ZtMWnSJAwaNAjt27fXd4ikRVlZWZg1axZ27NiB0aNHY9WqVXB0dNR3WEpdunQJXl5e+PDDD7FlyxaNPZJ+27ZtSEhIwMmTJyGRSFRa59dff8XZs2exbt06jcRARERERERERERERJonEgRBeHVBTEwMfH199RUPUbU2YsQIxMbG6juMSvH29sbOnTv1HQYRGZnXLjOMBq+HiIi0w5ivh8k43L59G/v27UN8fDx+++03mJubw9PTE15eXhgxYgRcXFz0HSJpmSAI2Lx5Mz7//HPUqFEDGzZswIABA/QdVoVu3LiB7t27w8PDAwcOHICVlZVGtpuTk4O33noLI0aMwPr161Veb/DgwcjNzcWJEyc0EgcRERERERERERERaVxsuXf+NNbJGqbE29sbAPjlqZEo6S9jxi/rSRGRSITo6Gj4+PjoOxQyINVl8iSvh8jQ8XqQjEl1uB4mw5ScnIzY2FjEx8fj3LlzsLe3R69evRAeHo6hQ4fCzs5O3yGSjty8eRP+/v44duwYJkyYgJUrV6JmzZr6DqtCaWlp6N27Nxo1aoS9e/dqbOInAAQGBsLMzAzBwcEqr5OSkoIDBw7wB6BEREREREREREREBq7cyZ9ERERERERERIamuLgYSUlJiI2Nxe7du5GWlgY3Nzf069cPX3/9Nfr27QsLCwt9h0k6JJVK8f333yMoKAjNmzfHqVOn0KlTJ32HpZKsrCz07t0bNWvWxM8//6zRyaqJiYmIiIhAVFQUateurfJ6q1atQqNGjTB48GCNxUJEREREREREREREmsfJn0RERERERERk0PLy8pCQkIDY2FjExcUhNzcXHh4eGD16NLy8vNCtWzeIRCJ9h0l6cOrUKUyaNAmpqakIDAzEggULjGby7+PHj9GvXz8UFRXh2LFjcHBw0Ni2X7x4gcmTJ6Nfv35qPaXh0aNH+PHHHxESEgJzc3ONxUNEREREREREREREmsfJn0RERERERERkcLKzs3Hw4EHExsbiyJEjKCoqQufOnTFv3jwMGzYMzZs313eIpEdPnjzBokWLsH79enh6emLXrl1o0aKFvsNSWV5eHry8vJCdnY2TJ0/C2dlZo9sPCQnB7du3ERcXp9Z6GzduhLm5Ofz8/DQaDxERERERERERERFpHid/EhEREREREZFBSE1NRVxcHGJjY3Hq1ClYWVmhZ8+eWLNmDYYMGYJ69erpO0QyAHFxcZg2bRqePXuGsLAwTJw40aju/FpYWIiPPvoI165dw4kTJ9C4cWONbv/q1atYvnw5li9fDnd3d5XXk0qlCAsLw+TJk2FnZ6fRmIiIiIiIiIiIiIhI8zj5k4iIiIiIiIj0QiaT4a+//kJcXByio6Nx9epVODo6on///ggICMCAAQNga2ur7zDJQNy/fx8zZ87Ezp074e3tjfXr18PJyUnfYalFKpVi+PDhOH36NI4dO4Y333xTo9uXyWSYMGEC3nnnHUyfPl2tdaOiopCRkaH2ekRERERERERERESkH5z8SUREREREREQ6k5+fj6NHjyI+Ph779+9HRkYG3N3d4eXlhbVr1+L999+HWMyPK+gfgiBg06ZN+Pzzz+Ho6IhDhw6hT58++g5LbTKZDJ999hmOHTuGQ4cOoV27dhrfx9q1a3HmzBmcPXsW5ubmaq/r7e0NNzc3jcdFRERERERERERERJpnpu8AAMDf3x8ikUj+98knn5Qpc/ToUcyfPx8ymQzDhg2Dm5sbrKys4OLigiFDhuDixYuV3r9MJkNoaCi6du1a5rX9+/dj+fLlKC4uLrV87969pWJ2dHSs9P6NCfuKqgtDy1MyDMwLIuV4jJCx0EaufvPNN6WuKUv+WrVqJS/DXCUq38OHDxEZGQkfHx/Uq1cPQ4cOxblz5zB58mQkJyfj5s2bWL16NXr16sWJn1TK5cuX0a1bN0ybNg1+fn64ePGiUU78FAQBU6dOxa5du7Br1y54enpqfB937tzBokWLsGDBArRp00atdY8fP46zZ89i1qxZGo+LiIiIiIiIiIiIiLTDICZ/AoCDgwMOHjyIa9euISIiotRrX3/9NdasWYMFCxZAJpPh5MmT2L59O3JycpCYmIj8/Hy89957SE9PV3u/KSkpeO+99zBnzhzk5eWVeX3w4MGwsrJCz549kZubK18+ZMgQpKWl4cSJExgwYID6FTZi7CsydoaYp6R/zAsi5XiMkLHQZq5WhLlKVNqtW7ewevVq9O7dG87Ozpg8eTIePXqEpUuX4u7du/jjjz8QFBQEDw8PfYdKBqigoABBQUFo3749Xrx4gdOnT2P16tWwtbXVd2iVMm/ePISHh+Onn35Cv379tLKP6dOno0GDBpg/f77a665cuRKenp549913tRAZEREREREREREREWmDwUz+tLa2Rr9+/dC8eXNYWlrKly9btgxRUVGIiYlBzZo1AQBdunSBp6cnbGxs0KRJEwQHB+Px48fYsmWLWvu8cOEC5s2bhylTpii9I0JAQADeeecdDBgwAEVFRQAAkUgEFxcXdO/eHc2aNVO/wkaMfUXGzFDzlPSLeUGkHI8RMhbazFUA2Lp1KwRBKPV3+fLlUmWYq2TqkpOTERQUhA4dOsDd3R2LFy+Gvb09wsPDkZmZiSNHjiAgIAANGjTQd6hkwE6cOIG2bdtixYoVWLJkCX7//Xe0b99e32FV2tKlS7FixQps2rQJI0aM0Mo+tm3bhgMHDiA8PBxWVlZqrXv58mX8/PPPCAwM1EpsRERERERERERERKQdBjP5U5EbN25g0aJFWLx4sfyDa7FYjLi4uFLl3N3dAQA3b95Ua/vvvPMOdu3ahdGjR5eaxKhIUFAQzp8/j1WrVqm1D1PBviJjwDwlRZgXRMrxGCFjoe1cVQdzlUxJcXExEhMTERAQgIYNG6JVq1bYsmUL2rdvj/379yMjIwMxMTEYM2YM7Ozs9B0uGbjc3FxMnjwZ77//Ppo2bYr//e9/CAwMhLm5ub5Dq7R169bh66+/RlhYGMaOHauVfTx8+BBz587F1KlTK/U4+RUrVqBFixZ8WgoRERERERERERGRkTHoyZ9r1qyBIAgYPHiw0nL5+fkAoNUvkuzt7dGjRw+sWrUKgiBobT/Gin1FxoB5SoowL4iU4zFCxoK5SqQ7z58/R1xcHMaMGYM6deqge/fuOHr0KEaPHo2TJ0/i1q1b+OGHHzBo0CBYWFjoO1wyErGxsWjRogX279+PLVu2IC4uDm5ubvoOq0oiIyMREBCAb7/9Fv7+/lrbz8yZMyEWi/HNN9+ovW5aWhqioqIQGBgIMzOD/piQiIiIiIiIiIiIiF5j0J/qHjhwAC1atICNjY3Scr///jsAVOruBupo27Yt7t27hwsXLmh1P8aIfUXGgHlKijAviJTjMULGQhe5On/+fNjb28PCwgJNmjTB0KFDcfbsWYVlmatU3WRlZSEyMhKDBg2Cg4MDhg0bhtTUVMyfPx/Xr19HcnIyli1bBk9PT4hEIn2HS0bk1q1b6NevH3x9fdG3b18kJydjzJgx+g6rynbu3Ilx48Zh3rx5Wn2c+sGDB7F9+3aEhYWhVq1aaq8fGhoKJycnfPzxx1qIjoiIiIiIiIiIiIi0yWAnfz5//hy3bt3CG2+8UW6ZzMxMREVFISAgAF26dKnwLj9V1axZMwDApUuXtLofY8O+ImPAPCVFmBdEyvEYIWOhi1z97LPPsH//fty9exfPnj3Djh07cOfOHfTo0QPJycllyjNXqTpITU3F6tWr4enpifr162PKlCkAgLVr1yI9PR2JiYkIDAyU5zuROoqKirB69Wq8/fbbSE1NRUJCAiIjI+Hg4KDv0KosPj4eH3/8MaZOnYrg4GCt7ef58+eYNm0aRo0ahSFDhqi9/qNHj7Bp0ybMmjWLd+klIiIiIiIiIiIiMkJifQdQnqysLAiCoPTOPV26dMHz58/h4+ODb775BhKJRKsxlcSSmZmp1f0YG/YVGQPmKSnCvCBSjscIGQtd5GrDhg3RsGFD+f937twZmzdvRps2bbB+/XqEhYWVKs9cJWNUXFyMpKQkxMfHY+/evbh27RocHR3Rv39/BAQEYMCAAbC1tdV3mFQNnD9/HpMmTcL58+cxZ84cLF68GJaWlvoOSyOOHj0Kb29vjB49GqtWrdLqvubPn48nT54gNDS0UuuHhYVBJBJh4sSJGo6MiIiIiIiIiIiIiHTBYCd/FhQUAIDSD//r1q2LiIgItGzZUicxWVtbl4qNXmJfkTFgnpIizAsi5XiMkLHQV662bt0a5ubmuH79epnXmKtkLPLz83H06FHEx8dj//79yMjIgLu7O7y8vBAeHo6uXbvCzMxgHxpCRiYvLw9LlizBypUr0bVrV1y4cAFvvfWWvsPSmFOnTmHYsGEYNGgQwsPDtXrsnDlzBmFhYfjPf/6DevXqqb3+ixcvsH79ekydOrVSj4snIiIiIiIiIiIiIv0z2MmfJV+WFhcXl1vGyckJtWvX1lVIKCwsBPBPbPQS+4qMAfOUFGFeECnHY4SMhb5yVSaTQSaTKZx0ylwlQ/bw4UMcOHAA8fHxOHjwIPLy8tC2bVtMnjwZPj4+8PDw0HeIVA39/PPPmDp1Kh4/foz/+7//w4wZM6rVxOIzZ86gX79+6N27N7Zv3w5zc3Ot7auwsBDjx49Hjx498Omnn1ZqG1u2bEFOTg5mzpyp4eiIiIiIiIiIiIiISFcMdvJn3bp1IRKJ8Pjx43LLxMXF6TAiyGOpzB0VqjP2FRkD5ikpwrwgUo7HCBkLXeRq3759cejQoVLLzp49C0EQ0KVLlzLlmatkaG7duoX9+/cjPj4ex48fh1gshqenJ7755ht4e3ujQYMG+g6RqqnMzEx8/vnn2Lp1K7y8vLBx40a4uLjoOyyNunDhAgYMGICuXbtix44dEIu1+3FbSEiI/JgWiURqry+TybB69WqMGTMGzs7OWoiQiIiIiIiIiIiIiHTBYG+xYGNjA3d3d6SlpSl8/caNG6hXrx58fX3LvDZy5EjUq1cPf/75p0ZjKomldevWGt2usWNfkTFgnpIizAsi5XiMkLHQRa7eu3cPUVFRyM3NhVQqRVJSEiZMmAA3NzdMmTKlTHnmKhmC5ORkBAUFoUOHDnB3d8eSJUtgb2+PiIgIZGZm4siRIwgICODET9IKQRAQGRmJli1b4tixY9i9ezfi4uKq3cTPa9euoW/fvmjbti327t2r8G7QmnT16lUsX74cwcHBcHd3r9Q29uzZg6tXr2L27NkajuU6428AACAASURBVI6IiIiIiIiIiIiIdMlgJ38CwMCBA5GcnIz8/PwyrwmCUO56hYWFyMrKwr59+5Ru//Tp0/D09ESDBg1w5swZXLhwAc7OzujWrRtOnDhRpvzZs2fh4uKCt99+W/3KVHPsKzIGzFNShHlBpByPETIW2s7Vfv364csvv4SrqytsbGzw/9i777Aorv5t4PdKBykWLIkFa2IhxpYQWxRjR40KSNRYnmDHioqKBQVExCixd2NLBOy7oqIoNsRujFixoWJHQAEB4bx/5A2/YF1gd2d3uT/X5XU9zzB7zj0z3zkzsCczrq6uaNq0KWJiYlCqVKl31metkhTevHmDY8eOYdSoUahQoQLq1q2L33//HQ0bNsSuXbvw6NEjhIaGom/fvrCyspI6LumxuLg4tGnTBgMGDECPHj1w5coVdOvWTepYKhcXF4dWrVqhWrVq2LFjB0xNTdXaX05ODtzd3WFvb48RI0YUuJ1ff/0VP/74I2rVqqXCdERERERERERERESkaVr72ncAGDFiBJYsWYKtW7eiT58+eX5Wo0YNPH78+L2f27JlC1q2bInKlSt/tH0HBwccO3ZMqSzPnz9HZGQk/Pz8CvRKLX3HY0W6gHVK78O6IPo4niOkK9Rdq3PnzsXcuXOVysJaJU1KTU3FwYMHERYWhl27diE5ORm1a9dGnz594OTkhKZNm7IOSWMyMjIQGBiIWbNmoU6dOjh9+jQaNGggdSy1iI+PR5s2bVCpUiXs3bsXxYsXV3ufixcvxsmTJ3Hq1CkYGBgUqI3Dhw/jxIkTOH78uIrTEREREREREREREZGmac2TP9PT07Fv3z7cuHEDmZmZAIDq1atj5syZmDlzJl69eqVUO9nZ2dixYwdevnwJNzc3leXz8fHB119/jZEjRwL45+lBCQkJOHbsGOLi4lTWjy7gsSJdpc11StJhXRB9HM8R0hWsVSpK7t27hxUrVqBz584oWbIkunXrhlu3bmHSpEm4fv06YmNjMXv2bDRr1owTP0ljDh06hHr16mHOnDnw9/fHyZMn9Xbi54MHD9CqVStYW1sjPDwclpaWau8zPj4e3t7emDhxIurXr1/gdoKCgtC8eXM0adJEhemIiIiIiIiIiIiISApa8+TPxMREtG/fHgDQu3dvbNy4EQAwadIkvHr1Cm5ubti0aROsra0/2k5UVBS2bt2KPXv2wNzcXCXZ5s2bhwsXLiA8PBxGRkYAgJ07d+Z5Zdn7XvWor3isSJdpa52StFgXRB/Hc4R0BWuV9FlsbCwUCgXkcjmio6NhZmYGR0dHrFy5El26dIGNjY3UEamISkxMxKRJk7By5Up06tQJe/fuhZ2dndSx1ObJkydo06YNjIyMsG/fPpQsWVIj/Y4YMQLly5eHt7d3gdu4cuUK9uzZg507d6owGRERERERERERERFJRSaEEP9dEBoaip49e+KtxZKLiIjAwYMHMXv2bI32u3PnTly+fBkTJkwo8Cu11MXFxQUAEBYWJnGSvHis3k9bj5eydD3/21inqiOTyRASEgJXV1epoxQa60J1tPV+Qlm6nl9deI5oH327PqsKa1U7sV7zJzs7GydOnIBCocCOHTtw7do12Nraon379nBxcUHbtm1hYmIidUwqwoQQ2LBhAzw9PWFsbIyAgAD07dtX6lhqlZSUBEdHR7x8+RKHDx/GZ599ppF+//jjD/z88884fPgwmjVrVuB2+vXrh1OnTiE2NhbFimnNy4CIiIiIiIiIiIiIqGDCdGbyJ72LX57qFl0/Xrqen9RHnyZ/kuro+v2EruenooPXZ9IlrNdPS09Px4EDB6BQKLBr1y48evQIVatWhZOTE1xcXNCkSRNO2CKtcP36dQwdOhRHjhzBsGHD4Ofnp5FXn0spOTkZP/zwA548eYLDhw9r7OmmT548QZ06deDq6orFixcXuJ379++jWrVqWL58Ofr376+6gEREREREREREREQklTCtee07ERERERERUVHz/Plz7N69GwqFAnv27EFaWhrq16+PwYMHo2fPnqhVq5bUEYlypaenIzAwEAEBAahbty6io6PRuHFjqWOpXVpaGjp37oyHDx/iyJEjGn2t/fDhw2FhYVHop1nPnz8ftra26NWrl4qSEREREREREREREZHUOPmTiIiIiIiISINu376NXbt2QaFQICoqCoaGhmjWrBn8/Pzg6uqK8uXLSx2R6B0HDx7E0KFD8fjxY8yZMwceHh4wMDCQOpbapaenw8nJCdeuXUNUVBSqVq2qsb5DQ0OxdetW7Nmzp1BPVk1OTsbq1asxZcoUGBsbqzAhEREREREREREREUmJkz+JiIiIiIiI1Cw2NhZhYWFQKBQ4e/YsSpYsidatW2P16tXo1q2b3r8ym3TXw4cP4eXlhQ0bNsDJyQmRkZGoUKGC1LE0IjMzE87Ozjh//jwOHjyo0SfxPnv2DCNHjsTAgQPRrl27QrW1ePFiCCEwcOBAFaUjIiIiIiIiIiIiIm3AyZ9EREREREREKvbmzRvExMQgLCwMW7duxYMHD1C5cmW0a9cO06dPR/v27WFkZCR1TKIPysnJwapVqzB+/HiULl0ae/bsQfv27aWOpTFZWVlwcXHB8ePHceDAAdSvX1+j/Xt4eMDQ0BCBgYGFaicjIwOLFi3CsGHDYG1traJ0RERERERERERERKQNPjj508XFRZM5qABiYmIA8FjpipiYGDg4OEgdo1BiYmJYb/Re8+fPR1hYmNQxSIvcv39f6ggqwTGPtB3vB0mX6MP98Ke8ePECBw4cgFwux65du5CcnIzatWujT58+cHJyQtOmTSGTyaSOSfRJFy5cwJAhQ3Du3DkMHToUs2bNgoWFhdSxNCY7Oxt9+vTBoUOHsG/fPjRq1Eij/e/atQuhoaHYvXs3bGxsCtXWunXrkJiYiBEjRqgoHRERERERERERERFpi3cmf1asWBHOzs5SZKF80vcvTvWNg4MDvvvuO6ljFJguZyf14jWD3qdChQo6XRu8HyJdwftB0iW6fj/8IfHx8di7dy/kcjkiIiKQnZ0NBwcHzJgxA927d0fFihWljkiktNTUVPj6+mLu3Llo0qQJzp8/jzp16kgdS6Oys7PRv39/KBQKhIeHa3zcev78OQYPHowBAwagQ4cOhWorJycHwcHB6Nu3Lz777DMVJSQiIiIiIiIiIiIibSETQgipQxARERERERHpitjYWCgUCsjlckRHR8PMzAyOjo5wcXFBly5dCv2kPiIpyOVyeHh44OXLl5g+fTpGjBiBYsWKSR1Lo4QQGDJkCNatW4dt27ahY8eOGs/Qu3dvREVF4dKlSyhRokSh2tq2bRucnZ0RGxuLWrVqqSghEREREREREREREWmJME7+JCIiIiIiIvqI7OxsnDhxAgqFAtu3b8f169dha2uL9u3bw8XFBW3btoWJiYnUMYkK5Pbt2xgxYgTCw8PRv39/zJkzB6VLl5Y6lsYJITBs2DCsWbMG27ZtQ6dOnTSeQaFQoHPnztixYwe6du1a6PaaNGmCcuXKYdu2bSpIR0RERERERERERERaJuyd174TERERERERFXXp6ek4cOAAFAoFdu7cicePH6Nq1apwcnLC6tWr0aRJkyL3VETSLxkZGQgKCsKsWbNQtWpVREVFoUWLFlLHkoQQAh4eHlizZg22bNkiycTP5ORkDB06FH379lXJxM/Dhw/jxIkTOH78uArSEREREREREREREZE24pM/iYiIiIiIiAA8e/YM4eHhUCgU2LNnD9LS0lC/fn04OTmhZ8+efG0y6Y3Dhw9j2LBhuHPnDsaPH4/JkyfD2NhY6liSEEJg5MiRWL58OcLCwlQy8bIg+vXrh/379+PSpUsoWbJkodtzcnJCcnIyjh49qoJ0RERERERERERERKSF+ORPIiIiIiIiKrpu3boFuVwOhUKBqKgoGBoaolmzZvDz84OrqyvKly8vdUQilXn06BEmTJiAjRs3olOnTggPD0flypWljiWpiRMnYunSpdi0aZNkEz/Dw8Oxfv16bNu2TSUTP//666/ciexEREREREREREREpL/45E8iIiIiIiIqUmJjYxEWFgaFQoGzZ8+iZMmSaN26NZycnNCtWzdYWlpKHZFIpXJycrBq1SpMmDABlpaWmD9/PpydnaWOJblJkyYhKCgIGzZswE8//SRJhuTkZNjb26NFixbYuHGjStp0cXHBjRs3cP78echkMpW0SURERERERERERERah0/+JCIiIiIiIv2WkZGBo0ePQi6XY+vWrXjw4AHs7OzQtm1bTJ8+He3bt4eRkZHUMYnU4ty5cxg6dCjOnz+PoUOHwt/fH8WLF5c6luS8vb0RFBSEdevWSTbxEwDGjh2L169fY/78+Spp7+rVq9i2bRtCQkI48ZOIiIiIiIiIiIhIz3HyJxEREREREemdFy9e4MCBA5DL5di5cydSUlJQu3ZtuLu7o3PnzmjQoAEnRpFeS0pKwvTp07F48WI0a9YMFy5cQO3ataWOpRWmTp2K2bNn4/fff0fv3r0lyxEZGYm1a9ciLCwMtra2KmkzICAANWvWRPfu3VXSHhERERERERERERFpL772nYiIiIiIiPRCfHw89u7dC7lcjoiICGRnZ8PBwQEuLi7o3r07KlasKHVEIrUTQmDDhg0YP348ihUrhsDAQPz888+c7Pz/+fj4YObMmVi2bBkGDRokWY6UlBTY29vju+++w+bNm1XSZnx8PKpXr47Vq1fj559/VkmbRERERERERERERKS1+Np3IiIiIiIi0l2xsbFQKBSQy+WIjo6GmZkZHB0dsXLlSnTp0gU2NjZSRyTSmOvXr2P48OE4ePAgevfujfnz56NUqVJSx9Iac+fOxcyZM7FkyRJJJ34CwPjx45GWloYFCxaorM2AgABUqFBB0tfYExEREREREREREZHmcPInERERERER6Yzs7GycOHECCoUC27dvx/Xr12Fra4v27dvDy8sLbdu2hYmJidQxiTQqLS0Nc+bMQUBAAOrUqYPo6Gh8++23UsfSKvPmzcOECROwaNEiDBkyRNIsBw8exMqVK7F582aUKVNGJW0+evQI69atw/z582FoyD/3ERERERERERERERUFfO07ERERERERabX09HQcOHAACoUCO3fuxOPHj1G1alU4OTnBxcUFTZs25SutqciSy+UYMWIEkpOT4ePjAw8PDxgYGEgdS6sEBwdj7NixWLBgATw8PCTNkpqainr16qFOnTrYuXOnytr19PTEH3/8gdu3b8PU1FRl7RIRERERERERERGR1uJr34mIiIiIiEj7PHv2DOHh4VAoFAgPD0d6ejrq16+PIUOGwM3NDV9++aXUEYkkdevWLYwcORK7d++Gi4sLFi5ciLJly0odS+ssWLAAY8aMQWBgoOQTP4F/XveelJSEFStWqKzN58+fY8WKFZg5cyYnfhIREREREREREREVIZz8SURERERERFrh1q1bkMvlUCgUiIqKgqGhIZo1awZ/f3+4urqifPnyUkckklxWVhaWLFmCKVOmoHz58oiIiECbNm2kjqWVVq1ahdGjRyMgIAATJkyQOg6ioqKwbNkybNq0SaUTdYODg2FiYoKBAweqrE0iIiIiIiIiIiIi0n587TsRERERERFJIicnB+fPn4dcLkdYWBguX76MkiVLolOnTujcuTPat28PS0tLqWMSaY3w8HCMGjUKDx8+xNSpUzF27FgYGRlJHUsrrVmzBgMHDsTMmTPh7e0tdRykpaWhXr16+PLLLyGXy1XWbkpKCipXroxx48ZpxXYSERERERERERERkcbwte9ERERERESkOa9fv8axY8cgl8uxZcsWJCQkwM7ODl26dMFvv/2G77//npPZiN7y4MEDTJo0CRs2bICTkxMOHDiAypUrSx1La61duxYDBw6Ej4+P1kyInDhxIp49e4Zly5aptN1FixYhJycHw4cPV2m7RERERERERERERKT9OPmTiIiIiIiI1OrFixc4cOAA5HI5du7ciZSUFNSuXRsDBw5E586d0bBhQ6kjEmml/77ivVy5ctizZw/at28vdSyttm7dOri7u2Pq1KmYOnWq1HEAAEeOHMHixYuxdu1afP755yprNy0tDb/99htGjBgBGxsblbVLRERERERERERERLqBr30nIiIiIiIilbt79y727dsHuVyOiIgIZGdnw8HBAS4uLujRowcqVKggdUQirXbw4EF4eHjg7t27GD9+PCZNmgQTExOpY2m1DRs2YMCAAfDy8oK/v7/UcQAAr169Qr169VCnTh3s2rVLpW0HBwfD29sbd+7cga2trUrbJiIiIiIiIiIiIiKtx9e+ExERERERkWrExsZCoVBALpcjOjoaZmZmcHR0xMqVK9G1a1dYW1tLHZFI6739ivfw8HDY2dlJHUvrrVu3Dr/88gvGjx+vNRM/AWDs2LFISUnBihUrVNpuVlYW5s+fj8GDB3PiJxEREREREREREVERxcmfREREREREVCDZ2dk4ceIEFAoFtm3bhhs3bsDW1hbt27eHl5cX2rZtyycVEinp7Ve8h4eHo0OHDlLH0glr166Fu7s7xo0bh4CAAKnj5Nq/fz9WrVqFzZs3o1y5cipte+3atXj8+DE8PT1V2i4RERERERERERER6Q6+9p2IiIiIiIiUlpaWhsjISCgUCuzYsQNPnjxB1apV4eTkBBcXFzRt2hQymUzqmEQ65dChQ/Dw8MDt27cxYcIETJw4EaamplLH0glr1qzBwIEDMX78eMyePVvqOLmSkpJgb2+PFi1aYNOmTSptOzs7G7Vq1YKjoyOWLVum0raJiIiIiIiIiIiISGfwte9ERERERET0cc+ePUN4eDgUCgXCw8ORnp6O+vXrY+jQoXBzc8OXX34pdUQinZSQkICJEyfmvuJ99+7dfMV7PqxevRqDBg3SuomfADBs2DDk5ORg4cKFKm/7jz/+wK1btxAeHq7ytomIiIiIiIiIiIhId3DyJxEREREREb3j1q1bkMvlCAsLw4kTJ2BiYoLWrVtj3rx56NKli8pfYUxUlPz7ivepU6eiTJky2L17Nzp27Ch1LJ2yatUqDB48GNOmTcP06dOljpPHjh07sHnzZigUCpQsWVKlbQshMGfOHPTq1QvVq1dXadtEREREREREREREpFvy/dr3+/fvIzo6Wl15iHRaxYoV8d1330kdQy1OnDiBe/fuSR2DiHSMq6ur1BEKhPc7RFRUpaWlYfv27Thz5gwSEhJgZWWFhg0bolGjRvjqq69gbGxcqPb1+X6ZSFlRUVHw8PDArVu3+Ir3Alq5ciWGDBmC6dOnY9q0aVLHyePp06eoW7cuunXrppZXsm/duhWurq7466+/ULduXZW3T0REREREREREREQ6Iyzfkz9DQ0PRs2dPdQUi0mnOzs4ICwuTOoZauLi4YMuWLVLHICIdk8/bDK3B+x0iIvXQ5/tlok95+xXvCxYsQJUqVaSOpXP+nfjp4+ODqVOnSh3nHT169MD58+fx119/wdLSUuXtN27cGHZ2dhxLiYiIiIiIiIiIiCiswK9919XJHETq4uLiInUEteOX9USkLH2ZPMn7HSIi1SkK98tE7/P2K94VCgU6deokdSydtGLFCgwZMgQzZ87ElClTpI7zjrVr12LHjh04ePCgWiZ+7tmzB2fOnFHLE0WJiIiIiIiIiIiISPcUePInERERERERERF92J49ezBq1Cg8ePAAkyZNwrhx4/iK9wJavnw5hg4dCl9fX3h7e0sd5x3379+Hp6cnxowZg++//14tfcyaNQsdO3ZEw4YN1dI+EREREREREREREekWTv4kIiIiIiIiIlKhmzdvYtKkSQgLC4OTkxMiIiJgZ2cndSydtWzZMgwbNgx+fn6YPHmy1HHeIYSAu7s7ypUrB19fX7X0cfjwYRw7dgxHjx5VS/tEREREREREREREpHs4+ZOIiIiIiIiISAXS09MRGBiIwMBAVKpUCXv27EH79u2ljqXT5s+fj7Fjx2LWrFmYNGmS1HHea+HChYiMjER0dDTMzMzU0oe/vz9atmyJZs2aqaV9IiIiIiIiIiIiItI9nPxJRERERERERFRIcrkcI0eOxNOnT+Hl5YXJkyfD2NhY6lg6bd68efD09ERAQAAmTpwodZz3unnzJry9veHt7Y3GjRurpY/Tp09j//792L9/v1raJyIiIiIiIiIiIiLdVEzqAEREREREREREuur69evo0KEDunbtiubNmyMuLg4+Pj6c+FlIv/76K8aNG4fg4GCtnfiZk5OD/v37o0aNGvD29lZbP/7+/vjmm2/www8/qK0PIiIiIiIiIiIiItI9fPInEREREREREVE+paamIigoCAEBAahTpw6OHj2Kpk2bSh1LL8ydOxcTJkxAcHAwRo4cKXWcD5o9ezZOnz6N06dPw8jISC19XL58GXK5HNu3b1dL+0RERERERERERESku9T+5M+tW7eiatWqkMlkH/xnZ2enlr7KlSuHPn36qKRtdRkwYABMTU0hk8nw+vXrQrcXExODWrVqoVixYpDJZChbtiz8/PxUkFR1dPE4kbTCw8NhbW0NuVwuaY65c+eiTJkykMlkWLZsmVr6CAgIgLW1NWQyGS5cuKCWPgrLz8/vvWN53bp1C9zmX3/9BTc3N1SpUgUmJiYoXbo06tWrV6jxS911I/VYpgu1QqSr3N3dYWlp+c75pS3XI0A9YzEAXLt2DSNGjECdOnVgaWkJQ0NDWFtbo2bNmujUqRNOnDihoi3Qfpr8PUZVdKF2ifSBEALr169H9erVsWDBAsyZMwenT5/mxE8VCQoKwoQJE/Dbb79p9cTP2NhY+Pr6wt/fH/b29mrrx8/PD3Xr1kXnzp3V1gcRERERERERERER6Sa1T/7s0aMHbt26hWrVqsHa2hpCCAgh8ObNG6SlpeHx48cwNzdXS1+PHj3Cxo0bVdK2uqxduxbjxo1TWXsODg64cuUK2rZtC+CfL/CnTJmisvZVQRePE0lLCCF1BADAuHHjEB0drdY+Jk2ahOXLl6u1D23z999/o0mTJihXrhwOHTqE5ORkREdHo3379oiKiipwu+quG6nHsqJYK0SasmrVKqxcufKd5dpyPVKX1atXw97eHhcvXsS8efNw7949pKam4vz58/D19UVSUhL+/vtvqWNqjCZ/j1GVolq7RJp0/vx5NG/eHAMGDECbNm1w7do1jBo1CgYGBlJH0wtz5syBl5cXFixYgBEjRkgd54MyMzPRq1cvNGzYEKNHj1ZbP9euXUNoaCgmT54MmUymtn6IiIiIiIiIiIiISDdJ9tp3AwMDmJmZwczMDDVr1pQqhsalp6ejdevWap9Apk2K4jbTp+WnLjp16oTk5GQNpCJlbdiwQWVPuZw7dy5sbGwQHBycu6xmzZrw9fVFjx498qzLuiF9xuul9tO2cUWVY3FMTAwGDx6M77//Hvv27YOh4f/9mlC1alVUrVoVNjY2uHHjhtJt6mtN6+LvMdpWu0S66MWLF/Dx8cHixYvRoEEDnDhxAt98843UsfRKYGAgJk2ahIULF2L48OFSx/koHx8f3Lx5ExcuXFDrxF9fX1/UrFkTLi4uauuDiIiIiIiIiIiIiHSX2p/8qYwdO3ZIHUEthBAICwvDihUrcpetXr0aT548ee/6+voUh49tMxVdUtbF+85Nks7z58+RnJyMxMTEPMuNjY3feT0t64b0marqm7WqGpq4L9OmY+Xn54fs7GwEBATkmfj5X+3atYOHh4fSbRaFmtbG32OKWu0SqVtOTg7Wr1+PL774AmFhYVizZg1OnjzJiZ8q9u/Ez0WLFmn9xM+YmBjMmTMHv/76K6pXr662fuLi4hASEoKpU6eiWDGt+PMdEREREREREREREWkZrfrr8ciRI2FsbIxy5crlLhs+fDgsLCwgk8nw7NkzAP+8Bszc3ByWlpZ48uQJPD098fnnn+PatWv57jM7OxvTpk1DpUqVYGZmhq+++gohISEAgCVLlsDCwgLm5ubYuXMnOnToACsrK1SoUAF//vnnO+3MmjULX3zxBczMzFC6dGlUqVIFs2bNgqurKwBg9OjR8PT0xM2bNyGTyfJ8SVCsWDHs3r0bHTp0gLW1NcqXL481a9bk6WPv3r2wsrKCv79/vrdT2W1ZsGABTE1NUaZMGQwZMgTly5eHqakpmjRpgpMnT+aup+yx+tg258fRo0dRu3ZtWFtbw9TUFPb29ti3bx8AwN3dHTKZDDKZDNWqVcP58+cBAAMGDIC5uTmsra2xa9cuAB8/3qqsK/rH4cOH8c0338Dc3BxWVlawt7dHSkrKe+viQ/t/9erVqFSpEmQyGRYtWgRA9edmYQkhMG/ePNSqVQsmJiYoUaIEfvzxR1y9erVA673t8ePHsLOzg6GhIdq3bw9A+XNQ2XNaHZQdsxo3bozU1FQ4Ojri+PHjH1xPH+qGtaL/NmzYgEaNGsHU1BQWFhaws7ODr68vgI9fyz50vfzYdevfnytTq8rU1IfOp+bNmyt9nVWWqu6/PrXP83POBQUF4YsvvoCJiQmsra0xfvz4POscO3ZMK8eVT1FmLM7MzERkZCRKlSqVr8lMrOm8WLtE+uf06dP47rvv4O7ujp9++glXr15F37599fY/3JTK1KlTMXnyZKxYsQLDhg2TOs5HpaWloV+/fnB0dMSgQYPU2tfMmTNRpUoVjrVERERERERERERE9GEin0JCQkQBPiaqVasmrK2t8yyLjIwUQUFBeZb17t1blC1bNs+yoKAgAUA8ffo0d5m3t7cAIEaNGiUWLlwounfvLq5cufLBvj5k3LhxwsTERGzZskW8ePFCTJ48WRQrVkycPn06Tz+RkZEiOTlZPHnyRDRv3lxYWFiIzMzM3Hb8/f2FgYGB2Llzp0hLSxNnz54VZcuWFS1btszTX48ePUS1A443iQAAIABJREFUatXyLPtvH0lJSSIxMVF07NhRmJiYiNTU1Nz1FAqFsLS0FDNnzvzkdrVr104AEC9evHhvPx/blsGDBwsLCwtx+fJl8fr1axEbGysaN24sLC0tRXx8fO56yh6r922zEPk7TmFhYcLHx0ckJiaK58+fCwcHB1GqVKk8fRgYGIgHDx7k+VyvXr3Erl27cv+/ssf7fXX1Kc7OzsLZ2VmpdXVRfrfv1atXwsrKSgQGBor09HTx6NEj0b1799za+Ni58Pb+v3fvngAgFi5c+M66qjo3lXXjxg0BQCxdujR32bRp04SxsbHYsGGDSEpKEhcvXhQNGjQQpUuXFo8ePcr3en/++acAIM6fPy+EECIzM1P06NFD7Ny5M08WZc9BZc9pZfn6+ooKFSoIGxsbYWRkJOzs7ETXrl3FqVOn8qyn7JiVlpYmGjVqJAAIAKJ27doiMDBQPH/+/J11tbFu8jOWFaVaKej9grYoSP758+cLACIgIEA8f/5cJCYmiuXLl4vevXsLIZS7lr1d35+6bilbq8rW1IfOJ2Wvs8pS1f3Xp/Z5frZbJpOJX3/9Vbx48UKkpaWJxYsX5zm/hBBadT1S5Vh8/fp1AUA4ODjkK0NRqen3jfOjRo0Sf//99zv7hLX7cfp+v0z64/79+6J3795CJpOJtm3bKv07IeVPTk6OGDdunDAwMBBr166VOo5SPDw8hI2NTYF+j8qPuLg4YWhoKDZu3KjWfoiIiIiIiIiIiIhIp4VqdPLnvxN7/vuvsJM/09PT39uXMhNx0tPThbm5uXBzc8tdlpaWJkxMTMSwYcM+2M+/X6jGxcXlLmvcuLH45ptv8rQ/aNAgUaxYMZGRkZG77GMTl/7bx/r16wUAcenSpU9ux/t8bPLnp7Zl8ODB7+y/06dPCwBixowZucs0OfnzbbNmzRIAxJMnT4QQQhw4cEAAEH5+frnrJCcnixo1aog3b94IIQp+vJWl719m53f7Ll26JAAIhULx3p8rey4I8fEJC6o6N5X19uTPtLQ0Ubx48Tx1JYQQp06dEgByJ9sou54QeSf0ZWVliZ9++kns2bPnnSz5mdCnzDmtrPj4eHHu3Dnx8uVLkZGRIU6cOCHq168vzMzMCjxmZWZmit9++018+eWXudeHMmXKiKioqDzraWPdKDuWFbVaKWqTPzMzM4WNjY1o1apVnuVv3rwRwcHB7/3M29eyt+tbmeuWMrWan5r60PmkzHVWWaq6//rUPs/POWdubi7atGmTZ723J1cLoV3XI1WOxWfOnBEAxA8//JDvHP+lrzX9od9jPjb5k7X7fvp+v0y6Lz09Xfj6+goLCwtRtWpVsX37dqkj6a2cnBwxatQoYWBgINatWyd1HKVERkYKmUwmNm3apPa++vXrJ6pXry6ysrLU3hcRERERERERERER6axQjb723draGkKI3H+HDh3SZPfvuHbtGtLS0lC3bt3cZWZmZihXrtxHX61rbGwMAMjKyspd9vr1awgh8qyXnZ0NIyMjGBgY5DubkZHRO32ow/u25X0aNWoEc3PzT75yWFP+3T/Z2dkAAEdHR9SsWRNr1qzJPQ6bN2+Gm5tb7v4v6PGmgqlatSrKlCmDPn36wMfHB3fu3FF7n5o4N98WGxuLV69eoVGjRnmWN27cGMbGxrmvy1Z2vbdz9urVC2XKlMl9hbeqFOacrlixIurXr4/ixYvD2NgYDg4OWLt2LdLT07F48eIC5TEyMsLIkSNx5coVxMTE4Mcff8STJ0/g4uKCFy9eFKhNZWmqbopirRQlFy9eRFJSEtq1a5dnuYGBAUaNGvXez7x9LXubMtctZWq1IDX1NmWus8pS1f3Xp/a5stsdFxeHtLQ0tG7dOl/b8TGaGFdUORYXL14cwD+vsi0Mfa7pt3+P+dB5/T6sXSLdIJfLUadOHQQEBGDcuHGIjY3Fjz/+KHUsvSSEwIgRI7B06VKEhISgb9++Ukf6pJSUFPzvf/9D165d0atXL7X2dfPmTWzatAnTpk2DoaGhWvsiIiIiIiIiIiIiIt2m0cmfb2vZsiXGjRsnWf+pqakAgClTpkAmk+X+u3v3br6//O7YsSPOnj2LnTt3Ij09HWfOnMGOHTvg5OSkN1+KmpiY4OnTp5L0vXv3brRs2RK2trYwMTHBhAkT8vxcJpNhyJAhuHXrFiIjIwEA69evxy+//JK7jiqPN32amZkZDh48iGbNmsHf3x9Vq1aFm5sb0tPTNZpD3edmUlISgP+bOPNfNjY2ePnyZb7W+y8PDw/cuHEDy5Ytw+XLlwud9W2qPKft7e1hYGCA69evF7qtb7/9Ftu3b8fQoUPx9OlTSf5DAXXUDWtFv6WkpAD45xh9yKeuZW9T5rqlTK0WpKbepsx1Vlmquh5/ap8ru933798HANja2iq/EQWgiXvFgo7FdnZ2MDU1zffninJNBwcH55nEmh+sXSLtcvXqVbRv3x5du3ZFw4YNceXKFfj4+MDU1FTqaHopOzsbAwYMwMqVKxEaGooePXpIHUkpo0aNQlpaGpYvX672vvz8/FC5cmX89NNPau+LiIiIiIiIiIiIiHSbpJM/pXDkyBHMnz8fwP99UTp//vw8T/IRQuDEiRP5atfHxweOjo7o378/rKys0L17d7i6umLlypUq3wYpZGVlISkpCRUqVNBIf/89TvHx8ejWrRvKlSuHkydPIjk5GYGBge98pn///jA1NcWqVatw7do1WFlZoXLlyrk/V+XxJuXUqVMHcrkcCQkJ8PLyQkhICObOnavRDOo+N/+duPG+iSb/PWeUXe+/XF1dsX//ftjY2KBv37548+aNSjIDqj+nc3JykJOTAxMTk3x/tkePHu/dtp9//hlA4Z9EVxCqqpv/jmWsFf322WefAQCePXv23p8rey37L2WuW8rUakFq6n0+dZ1Vlqqux5/a58pu97+TezIyMpTfiALQxL1iQcdiExMTtGvXDs+ePcPx48c/uF5iYiLc3d0BsKYLg7VLpB0SExMxatQo2Nvb49mzZzh69ChCQ0NRqVIlqaPprezsbPTv3x9hYWGQy+Xo2rWr1JGUsmvXLvz+++9YuXIlypQpo9a+bt26hY0bN2Lq1Kl86icRERERERERERERfZLW/SXZ0NBQra86P3v2LCwsLAD887pMU1NTXLhwodDtxsbG4ubNm3j69Kle/oE+KioKQgg4ODjkLlPnsfrvcfr777+RlZWFYcOGoWrVqgD+eVrT20qUKIGePXti8+bNsLS0xMCBA/P8XJXHmz4tISEBSUlJqF27NmxtbREQEICIiAi1PJXwY9R9btatWxfFixfHmTNn8iw/efIkMjMz0bBhw3yt91+tWrVC6dKlsWLFCnTt2hV+fn7w8fHJ/XlhzsH3ndPKateuHfbt25dn2enTpyGEwHfffZfv9jIyMnD58mV89dVXeZZfu3YNAN5Zrgmqqpv/jmVFsVaKEjs7O5QsWRIRERHw9vZ+5+fKXsv+S5nrljK1WpCaep9PXWeVparr8af2eX7OuWLFiuHw4cMYOnRooTJ9jKqvR6oei318fLB3716MHTsWUVFRMDMze2edS5cu5WZnTf/j4cOHmDx5MtauXav0Z4p67RJJ7c2bN1izZg28vb1hZGSExYsXw93dHcWKFbn/NlajMjMz4ebmhoiICMjlcjg6OkodSSmPHj2Cu7s7BgwYoJHJqv7+/qhcuTJ69+6t9r6IiIiIiIiIiIiISPdp3bcb1atXR2JiInbs2IGsrCw8ffoUd+/eLXS7WVlZePz4MaKionIn4piammLAgAH4888/sWTJEqSkpCA7Oxv379/Hw4cP89W+h4cHKlWqhFevXn10vZIlSyIhIQF37tzBy5cv8zUZZ8+ePbCysoK/v3++shVETk4OXrx4gTdv3uDixYsYPXo0KlWqhP79++euo+yxys82v+84/fvklQMHDuD169e4ceMGTp48+d7PDx06FBkZGVAoFOjcuXOen6nyeNOnJSQkYMiQIbh69SoyMzNx/vx53L17N3cCWWHOhfxQ9twsKFNTU3h6emLbtm3YuHEjUlJS8Pfff2Po0KEoX748Bg8enK/13qdLly7o378//P39cfbs2dzl+RkvlTmnlfXgwQNs3rwZSUlJyMrKwokTJ+Du7o5KlSrlmXySnzGrW7duCA0NRVJSEpKTk7Fz505MnDgRXbt2zTP5U1fq5kPXnKJWK0WJiYkJJk+ejCNHjmDkyJF48OABcnJy8PLlS1y+fFmpa9nb9W1gYPDJ65YytVqYmnrbx66zylLV9fhT+1zZ7ba1tUWPHj2wZcsWrF69GikpKbh48SJWrFhRoO37EFVfj1Q9Fn/99dfYtGkTLl26hObNmyM8PBzJycnIysrC7du3sXLlSvzyyy8wMjICoNz9mT7XtBAC6enp2Lp1K6ysrJT+HMDaJZLSwYMH0aBBA3h4eKBXr164evUqBg0axImfapaRkQEXFxccPHgQEREROjPxUwgBd3d3WFpaIjg4WO393b17Fxs3boS3tzcn2xMRERERERERERGRckQ+hYSEiPx87Pjx46JmzZoCgAAgypUrJ1q3bv3B9Z8/fy5atWolTE1NRZUqVcSIESPE+PHjBQBRvXp1ER8fLwIDA4WZmZkAICpWrCg2bNgghBBi27Ztolq1arl9fejftm3bcvvLyMgQXl5eolKlSsLQ0FDY2tqKHj16iNjYWLF48WJhbm4uAIgaNWqImzdvihUrVggrKysBQFSuXFlcv35dCCHEwYMHRalSpfL0Y2RkJGrVqiW2bt2a29+5c+dE5cqVhZmZmWjWrJkYO3Zs7rb828fGjRtFiRIlBABRoUIFcenSJSGEEOHh4cLS0lL4+fl9cP/FxMSIOnXqiGLFiuXub39//3xty+DBg4WRkZH4/PPPhaGhobCyshI//vijuHnzZr6P1fu2eenSpfk+Tl5eXqJkyZLCxsZGuLi4iEWLFgkAolq1arn9/Kt+/fpi0qRJ790/HzveH6orZTk7OwtnZ+d8fUaX5Hf77ty5I5o0aSJKlCghDAwMxGeffSa8vb3FmzdvhBAfPxf+u/8XLlwoypUrJwAIc3Nz0aVLF7Wcm8r49ddfRdmyZQUAYWFhIbp37y6EECInJ0cEBQWJGjVqCCMjI1GiRAnRrVs3ce3atTyfV2a9rVu35p7/dnZ24smTJyIlJUVUrFhRABDFixcX69evF0Iofw4qe04ry9PTU1SrVk1YWFgIQ0NDUaFCBTFw4ECRkJCQZz1lxiwhhIiIiBA9e/YU1apVEyYmJsLY2Fh88cUXwsfHR7x+/TrPutpUNwW55hSlWsnv/YK2KWj+RYsWCXt7e2FqaipMTU1F/fr1xeLFi4UQn76WvV3fjx49+uh1SwjlxzhlakrZ6+DHrrPKUtX916f2ubLn3MuXL4W7u7soVaqUKF68uGjWrJmYNm1a7r3YX3/9pVXXIyFUPxb/Kz4+XowbN07Y29uL4sWLCwMDA2FjYyPq168vfvnlF3H8+PHcdfW9ppUd56dMmSKEEKxdJej7/TJpr7i4OOHi4iIACCcnJxEXFyd1pCIjNTVV/PDDD6JEiRIiJiZG6jj5smDBAmFoaCiio6M10p+7u7uoXLmyyMjI0Eh/RERERERERERERKTzQmVCCPGxyaFvCw0NRc+ePZHPj+m9JUuW4MaNG5g/f37usszMTEycOBFLlizBixcv3vv6TG00ZMgQhIWF4fnz51JHKZBOnTph0aJFqFKlikb7dXFxAQCEhYVptF9N0dXt06dzs6B0/ZyWQlGtG1XWiq7fL+hKfilqVarrrK4rquNKfrGmtY8qj4mu3k+S7kpNTUVQUBACAwNRuXJlzJs3Dx07dpQ6VpHx6tUrdOnSBbGxsYiIiEC9evWkjqS0y5cvo1GjRvDy8sL06dPV3l98fDxq1KiBJUuW4JdfflF7f0RERERERERERESkF8L4HikVePToEUaOHIkLFy7kWW5sbIxKlSohKysLWVlZOvWFfnZ2ttQRlJaVlZX7CtKLFy/C1NSUX94TAP08NwtKl85pqRX1umGt6A5N1Sqvs4VX1McVZbGmtQ9rl3SVEAJbtmyBp6cnXr16BR8fH4wZMwbGxsZSRysykpKS0KFDB9y+fRuRkZGoW7eu1JGUlpGRgd69e6Nu3bqYPHmyRvr08/NDuXLl8PPPP2ukPyIiIiIiIiIiIiLSD8WkDqAPzMzMYGRkhNWrV+Px48fIyspCQkICVq1ahWnTpsHNzQ1WVlZSx9RbXl5euHHjBq5fv44BAwbA19dX6kikJZQ5NxMSEiCTyT75z83NTerNUZurV68W+X3wXxzTSVdoqlaVuc5yHPk4Xo+Uo001Tf/gNZF00ZkzZ9CsWTO4ubmhZcuWuHr1Kry8vDjxU4NevHiBtm3b4sGDBzh69KhOTfwEAG9vb9y4cQObNm3K/Y8F1Ck+Ph7r1q3DlClTWKdERERERERERERElC988qcKWFtbIyIiAjNnzkTNmjWRmpqK4sWLo06dOpg9ezYGDRokdUSlTZ48GWvXrkVmZiaqVKmCoKAgODs7Sx3ro8zNzfHll1/i888/x+LFi1G7dm2pI5GWUObcNDQ01PrXOheGMuf0l19+qdf7IL/0aUzPD10c/4s6TdWqMtdZjiMfx+uRcrSppukfRfWaSLopISEBM2bMwKpVq9CiRQucO3dOp14zri+ePHmCH374ASkpKTh06BCqVasmdaR8OXLkCObPn4/Vq1ejRo0aGulz1qxZKF++PPr166eR/oiIiIiIiIiIiIhIf8hEPr9lDg0NRc+ePYv8l9NEb3NxcQEAhIWFSZxEPfR9+4hItXT9fkHX8xMRaSPeT5I6pKenY968eZg9ezZKly6NuXPnokePHlLHKpIePXqEH374AVlZWYiMjESFChWkjpQvSUlJqFevHho2bIht27ZppM/4+HjUqFEDixYtwsCBAzXSJxERERERERERERHpjTA++ZOIiIiIiIiIdIoQAiEhIfDy8kJiYiImTpwIT09PmJqaSh2tSIqPj0fr1q1haGiIQ4cO4bPPPpM6Ur4NGTIE2dnZWLlypcb69PX15VM/iYiIiIiIiIiIiKjAOPmTiIiIiIiIiHTGmTNnMGbMGBw/fhzOzs6YO3cuKlWqJHWsIuvOnTtwdHSEtbU1IiIiYGtrK3WkfPv9998RFhaGiIgIlCpVSiN93rlzB+vXr8fSpUthbGyskT6JiIiIiIiIiIiISL8UkzoAEREREREREdGnPHjwAIMHD8a3336LN2/eIDo6GqGhoZz4KaFr166hWbNmKFmyJA4cOKCTEz9v376NUaNGYcyYMWjdurXG+p0xYwYqVqyIvn37aqxPIiIiIiIiIiIiItIvfPInEREREREREWmttLQ0LFy4EH5+fihRogTWrl2Ln3/+GTKZTOpoRdqVK1fQunVrVK1aFeHh4bCyspI6Ur69efMGvXv3RsWKFeHn56exfuPi4rBx40asXr0ahob80xwRERERERERERERFUyB/8Ls4uKiyhxEOi8mJgYODg5Sx1CrmJgYnvtEpJT79+9LHUElOOYREalOUbhfJtUSQmDLli0YP348nj9/Dk9PT0ycOBGmpqZSRyvyzp8/j7Zt26J27dpQKBSwtLSUOlKB+Pv749y5czh16pRG62rGjBmoUqUKevXqpbE+iYiIiIiIiIiIiEj/8LXvOmLLli16M5GGiHTT/fv3sWXLFqljEBEVWbwfJKKi5NSpU2jWrBnc3NzQokULxMXFwcfHhxM/tUBMTAwcHR3RsGFD7N27V2cnfp45cwb+/v4ICgrCV199pbF+b9y4gc2bN8PHx4dP/SQiIiIiIiIiIiKiQinwX5nDwsJUmYM+QSaTYcyYMXB1dZU6Cn1AUXg6nIODA8/9Iiw0NBQ9e/ZkDZBS/q0XXcd6J23C+0HSdUXhfpkK7969e/D29sbGjRvRqlUrnDt3DvXq1ZM6Fv1/Bw8eRNeuXdGqVSuEhYXBxMRE6kgFkpqait69e6NVq1bw8PDQaN/Tp09HzZo14ebmptF+iYiIiIiIiIiIiEj/8BEDRERERERERCSp1NRUBAUFITAwEBUrVkRISAgnDGsZhUIBV1dXdO3aFevXr4eRkZHUkQpsxIgRSExMRFRUFGQymcb6vXz5MkJCQvDnn3+iWDG+jIeIiIiIiIiIiIiICoeTP4mIiIiIiIhIEjk5Odi4cSO8vLyQkZEBHx8fjB49WmefKKmv/vzzT/Tr1w8DBgzA0qVLdXri4vbt27F27VqEhYWhfPnyGu3bx8cHtWrVgrOzs0b7JSIiIiIiIiIiIiL9xMmfRERERERERKRxhw4dwtixY3Hp0iX873//g6+vL8qUKSN1LHrL8uXLMWzYMAwfPhy//fabRp+UqWoJCQkYOHAgBg0apPEJmJcuXcLWrVsRGhqq05NniYiIiIiIiIiIiEh78K/NRERERERERKQxcXFxcHV1haOjI0qXLo1z585h+fLlnPiphQIDAzF06FCMHz8eCxYs0OmJn0IIuLu7w8bGBnPnztV4/9OmTUOdOnXQrVs3jfdNRERERERERERERPqJT/4kIiIiIiIiIrVLTEyEn58fFi9ejBo1amDv3r1o166d1LHoAwIDAzFp0iTMmzcPo0ePljpOoc2fPx/79+/HsWPHYGlpqdG+z58/jx07dmD79u186icRERERERERERERqYzW/sU5PDwc1tbWkMvlUkchIh3EMYSIKP84dhIRkTpkZmZi3rx5qF69OjZu3Ijg4GBcuHCBEz+1lBACY8aMgbe3N1atWqUXEz9jY2Ph7e2NGTNm4Ntvv9V4/z4+Pqhfvz66dOmi8b6JiIiIiIiIiIiISH9p7ZM/hRBSRyAiHcYxhIgo/zh2EhGRqsnlcowZMwb37t3DkCFDMHPmTFhbW0sdiz4gOzsbAwcOxKZNm7B582Y4OztLHanQMjIy0KtXLzRs2BBeXl4a7//s2bOQy+WQy+WQyWQa75+IiIiIiIiIiIiI9JfWPvmzU6dOSE5ORufOnaWOgvT0dDRp0kTqGDpJE/uOxyd/Hj9+jOzsbKljqB3HEFI1jme6KyEhQeoIOoNjJxUFHM+JNOPUqVNo0aIFunbtigYNGuDq1av47bffOPFTi2VmZqJnz54ICQnBrl279GLiJwCMHz8ed+/excaNG2FgYKDx/qdNm4bGjRujU6dOGu+biIiIiIiIiIiIiPSb1k7+1CarV6/GkydPpI6hkzSx73h88mflypUoW7YsRowYgejoaD7lTQNYo/qB45nu6tevH6pXrw5fX1/ExcVJHYeUxPOB1IXjOZF6xcfHo2/fvnBwcMCbN29w/PhxhIaGokqVKlJHo49ITU1F586dERkZiYiICLRr107qSCoRERGBRYsWYdGiRbCzs9N4/9HR0QgPD4evr6/G+yYiIiIiIiIiIiIi/aeVkz+PHTuGSpUqQSaTYdGiRQCAJUuWwMLCAubm5ti5cyc6dOgAKysrVKhQAX/++WfuZxcsWABTU1OUKVMGQ4YMQfny5WFqaoomTZrg5MmTueuNHDkSxsbGKFeuXO6y4cOHw8LCAjKZDM+ePQMAjB49Gp6enrh58yZkMhmqV68OANi7dy+srKzg7++viV2iMUIIzJs3D7Vq1YKJiQlKlCiBH3/8EVevXs1dpzD7jsdHOyQlJWH58uVo2rQpKlSogMmTJ+Pvv/+WOpbKcAwhgOMZ/Z/s7GzcvHkTM2fORI0aNdCgQQMEBwfziaBv4dhJ2orjOZFuSExMxMSJE1GzZk2cOnUKISEhiI6OxnfffSd1NPqEpKQktG3bFhcuXMChQ4fQtGlTqSOpxLNnz9C/f390794dffr0kSTDlClT0KxZM7Rt21aS/omIiIiIiIiIiIhIz4l8CgkJEQX4WL7du3dPABALFy7MXebt7S0AiMjISJGcnCyePHkimjdvLiwsLERmZmbueoMHDxYWFhbi8uXL4vXr1yI2NlY0btxYWFpaivj4+Nz1evfuLcqWLZun36CgIAFAPH36NHdZjx49RLVq1fKsp1AohKWlpZg5c6aqN/29AIiQkBC19zNt2jRhbGwsNmzYIJKSksTFixdFgwYNROnSpcWjR49y1yvMvtPH4yOEEM7OzsLZ2Vlj/RWUr6+vMDExEQBy/xkbGwsAonr16mL69Oni+vXr73xOV7bvXxxDVE9T47+qcDyTljbVS6tWrfKMeTKZTBgZGQmZTCa++eYbERwcLJ48eZLnM9qUX5M4dmo3Td0PahuO5/pD1+4nSTmZmZli+fLlwtbWVpQqVUoEBweLrKwsqWORkh49eiS+/vprUb58eXHp0iWp46hU165dRaVKlcSLFy8k6X///v0CgIiKipKkfyIiIiIiIiIiIiLSe6Fa+eTPT2nSpAmsrKxga2sLNzc3pKamIj4+Ps86hoaGuU8Hql27NpYsWYKXL19i7dq1KsnQqVMnpKSkYOrUqSppTxukp6dj3rx5uU/FsLa2hr29PZYtW4Znz55hxYoVKuuLx0e7ZGZmAgDi4uIwa9Ys1KxZE1988QUCAwPx8OFDidOpHscQ/cfxjD5GCIGsrCwIIXD27Fl4enqiXLlycHR0xPr16/Hq1SupI2oljp0kBY7nRNpNLpejVq1aGD16NP73v//h5s2bGDVqFAwNDaWORkqIj49HixYtkJycjGPHjqFOnTpSR1KZpUuXQi6XY/369bCxsZEkw9SpU9GhQwd8//33kvRPRERERERERERERPpP57+RMTY2BgBkZWV9dL1GjRrB3Nw8z+shKa/Y2Fi8evUKjRo1yrO8cePGMDY2zvPaS1XTl+OTkJCAsLAwqWN81Kf28b/n0o0bN+Dt7Y3JkyejZcuWSElJweeff66JiBrFMUQ/cTzTHtowJiYlJX3wZ9nZ2bn/+8iRI4iKisJGokjTAAAgAElEQVTgwYPRsGFDAP+MDUZGRmrPqGs4dpKmcDwn0k4nT57EuHHjcPz4cTg7O+PAgQOws7OTOhblw7Vr19CmTRtYWlri0KFD+Oyzz6SOpDKxsbHw9PTE5MmTJZt4uWvXLpw8eRIxMTGS9E9ERERERERERERERYPOT/7MDxMTEzx9+lTqGFrr38kxxYsXf+dnNjY2ePnypVr714fjc/r0abi6ukod46PMzc2VWk8IgezsbMhkMhw8eBDFihXDo0eP8PDhQ5QvX17NKbWTPtRoUcHxTHtow5hYokQJpdb7dyLo69evcfz4cQD/PLFpxowZMDExUVs+fcfzgQqD4zmRdvn3PxDbsmULWrVqhTNnzqBBgwZSx6J8io2NRdu2bfH5559jz549KFWqlNSRVOb169fo1asX7O3tMW3aNEkyCCEwffp0dO/eHd98840kGYiIiIiIiIiIiIioaNDJ174XRFZWFpKSklChQgWpo2itf1+F9r4v0dW97/Tl+HTt2hVCCK3+N2nSpE9uh0wmg5GREWQyGRo3bozg4GB06tQJDg4ORXbip77UaFHB8Ux7SD3mCSHw9ddffzKngYEBihUrBiMjI3Ts2BFjxowBAMyePZsTPwuB5wMVFsdzIu2QmJiIiRMnwt7eHhcvXkRISAgiIyM58VMHnT59Gt9//z1q1qyJyMhIvZr4CQBjx47F3bt3sXnzZsme3h4SEoKLFy9KNvmUiIiIiOj/sXen8TXc/f/H30cSSSyJfSmlxFJVWqUtStHWRZVSIQRVlCqlUfRCriL2pbaopaSuLkoJUUH5UWppNCFUbVVbq2opaoklSCLf/43r31xXiDhZ55zk9Xw8csOZOTPvmfl850ycT2YAAAAA5B655s6fW7ZskTFGdevWTXrN1dX1gY8rzU0ef/xxFShQQLt27Ur2+o4dOxQXF5f0CFwp8/cdx8cxuLq6KiEhQZUrV5a/v7/eeOMNVahQQZIUERFhcTprUaPOhfMZ7GGz2ZQnTx4ZY/T888+rW7dueu2111SwYEGFhoZaHS9HYDwgozifA9aKi4vT3LlzFRQUJFdXV02aNEnvvPOOXF1zzX8l5CibN29W69at1ahRIy1btkweHh5WR8pUX3/9tebOnavFixcn/R6b3e7cuaNRo0apc+fOqlmzpiUZAAAAAAAAAAC5R46982diYqIuX76shIQE7du3TwMGDFC5cuXUrVu3pHkqVaqkS5cuaeXKlYqPj9eFCxf0+++/37OsIkWK6MyZMzpx4oSuXbum+Ph4rVu3Tl5eXho3blw2blXW8vDw0KBBg7RixQp9+eWXunr1qvbv368+ffqodOnS6t27d9K8Gdl3EsfHkeTNm1eSVKZMGQ0aNEi//PKLDh8+rKCgIMu+MHME1Khz43yG+7n7zsZTp07VmTNn9N1336lr164qWLCg1RGdGuMBmY3zOWCNxMREffnll6pataoCAwPVr18//frrrwoICKDx00mtXr1aLVq0UKtWrbRixYoc1/h56tQp9erVSz179pS/v79lOT7//HMdP35cI0eOtCwDAAAAAAAAACD3cMjmz1mzZunpp5+WJA0ZMkStW7fWnDlzNH36dElSzZo19euvvyokJESDBg2SJDVv3lxHjx5NWsatW7dUo0YNeXp6qmHDhqpSpYo2b96c7NGtffv2VZMmTeTv76+qVatqzJgx8vT0lCTVq1dPf/zxhySpT58+KlGihB577DG1aNFCly5dypb9YIWRI0dq/PjxGj16tIoVK6ZGjRrpkUce0ZYtW5Q/f/6k+TK67zg+1rp9+7YkqVSpUnr33Xf1448/6tSpU5o4caKqVq1qcbqM4xwCifMZUla9enWNHz9ev//+u3bs2KGAgACVLFnS6lgOgXMnHBXncyB7bdiwQbVr11a3bt3UpEkTHT58WGPGjOEPJJzY4sWL1bZtW3Xr1k0LFy607HHoWSUxMVFvvPGGihQpomnTplmWIy4uTmPHjlWPHj3k4+NjWQ4AAAAAAAAAQO5hM8aYtLwhNDRUHTp0UBrflq3efvttLVu2TBcvXrQ6Sqax2WxaunSp/Pz8rI6SYTnx+EhS+/btJUnLli2zOEnq5syZo/3798vf318NGjRQnjz29YA7y/ZlhpxaoxnlDOf/7Eat3J8j1cvfTVj+/v569NFH7XqPI+V3FoyHrJeTrgcdDfWbPXLT9aQzOnDggIYOHapvvvlGL730kqZMmaInnnjC6ljIoFmzZundd9/V0KFDNX78eKvjZIlRo0ZpwoQJioyMVK1atSzLMWvWLL3//vs6cuSIHn74YctyAAAAAAAAAAByjWU59nltd+7csToCUsHxsU7fvn2tjuAUqFHYi1pxfHPnzrU6Qq7BeIAzo36RW508eVLjxo3TJ598ojp16mjz5s1q3Lix1bGQCYKCgjR69GhNmDBBQ4YMsTpOloiIiNDYsWM1depUSxs/b968qYkTJ6pPnz40fgIAAAAAAAAAsk2Obf4EAAAAAAApu3jxoj788EPNmDFD5cuX15IlS9SuXTvZbDaroyGD7ty5o379+ikkJEQff/yx3nrrLasjZYkrV67o9ddfV9OmTdW/f39Ls3z00Ue6cuVKjm2yBQAAAAAAAAA4Jvue9+xEAgMD9emnnyomJkYVKlTQ8uXLrY6E/8HxgaOjRmEvagX4L8YDnBn1i9wmNjZWkyZNko+PjxYsWKBRo0Zp//79at++PY2fOUBcXJw6d+6sTz/9VEuWLMmxjZ+S1KdPH928eVOffvqppbV7/fp1TZkyRQMGDFDJkiUtywEAAAAAAAAAyH1y3J0/x48fr/Hjx1sdA/fB8YGjo0ZhL2oF+C/GA5wZ9YvcIiEhQf/+978VFBSkq1evql+/fgoMDJSXl5fV0ZBJrl+/Ll9fX/3www9as2aNXnrpJasjZZl58+YpNDRU69evt7zhcsqUKYqPj9fAgQMtzQEAAAAAAAAAyH1yXPMnAAAAAAD4r40bN2rgwIH65Zdf1L17d40aNUqlSpWyOhYy0cWLF9WyZUudOHFC27ZtU61atayOlGV+/vlnDRw4UEOHDrW8wfXixYuaPn26hgwZoiJFiliaBQAAAAAAAACQ++S4x74DAAAAAAApKipKzz//vP7xj3/o0Ucf1c8//6x58+bR+JnDnDhxQvXr19e5c+dyfOPnzZs35e/vr5o1ayooKMjqOJo4caI8PDz07rvvWh0FAAAAAAAAAJAL0fwJAAAAAEAO8ssvv8jPz0/16tVTYmKiIiIiFBoaqkqVKlkdDZns4MGDatiwofLmzauIiAhVrlzZ6khZauDAgTp58qQWL14sNzc3S7OcPn1as2fP1gcffKACBQpYmgUAAAAAAAAAkDvR/AkAAAAAQA5w+vRp9e7dWzVq1NDBgwcVGhqqiIgI1a9f3+poyAI7duxQo0aN5OPjo4iICD300ENWR8pSy5cv18cff6w5c+aoQoUKVsfRyJEjVbJkSb311ltWRwEAAAAAAAAA5FI0fwIAAAAA4MSuXLmiYcOGqXLlylq/fr3+/e9/a//+/Wrfvr3V0ZBFVq9erSZNmqhBgwZat26dvL29rY6UpU6ePKnevXurT58+8vf3tzqODh8+rM8//1yjR4+Wu7u71XEAAAAAAAAAALmUa3rfaLPZMjMH7NChQwd16NDB6hhIRbt27ayOkKWWL1/O2Ac1gFyFeoej4XoQzi6nXy9nt9jYWIWEhGj8+PFKSEjQyJEjFRAQIA8PD6ujIQstXLhQb775pjp37qyQkBC5uqb7v3acQnx8vDp27KiHHnpIU6dOtTqOJCkwMFDVqlVT586drY4CAAAAAAAAAMjF0v0NwdKlSzMzB9Jh+vTpkqT33nvP4iSQ/ns8crK6detSb7hHhw4dNGDAANWrV8/qKHAgkZGRmjFjhtUxMozrHTg6rgfhTHLD9XJ2iY+PV0hIiMaOHatr164pICBA77//fo6/+yOk4OBgvffee/rnP/+pCRMm5Io/VBk6dKj27dun6OhoeXp6Wh1H0dHR+vrrr7Vq1SrlycMDdQAAAAAAAAAA1kl386efn19m5kA6LFu2TBLHwlH8fTxysrJly1JvuEeHDh1Ur149agP3yAnNn9Q1HB3Xg3AmueF6OaslJiYqLCxMgYGBOnnypLp166agoCCVLl3a6mjIYsYYDR06VB9++KE+/PBDDRo0yOpI2WLdunWaPn26PvvsM1WrVs3qOJKkYcOGqX79+mrZsqXVUQAAAAAAAAAAuVzOfjYYAAAAAAA5wMaNG/X+++9r37598vX11fr161WxYkWrYyEb3LlzR71799bChQu1aNEi+fv7Wx0pW5w+fVpdu3ZVhw4d1LVrV6vjSJI2bNigTZs2afPmzVZHAQAAAAAAAACA5k8AAAAAABzV9u3bFRgYqG3btumll17Snj17VLNmTatjIZvExsbKz89PW7ZsUXh4uJo3b251pGyRmJiorl27qnDhwpo/f77VcST95+6rI0aMUMuWLdW4cWOr4wAAAAAAAAAAQPMnAAAAAACOJjo6WqNHj9aaNWv00ksvKTo6WnXq1LE6FrLR5cuX9eqrr+rnn3/Whg0bVL9+fasjZZugoCBt375dkZGRKliwoNVxJEnLli1TdHS0du/ebXUUAAAAAAAAAAAkSXmsDgAAAAAAAP7j0KFD8vPz07PPPqsLFy5o06ZN+vbbb2n8zGXOnj2rxo0b69dff9WWLVtyVePn1q1bNX78eE2fPl21atWyOo4k6c6dOwoKClKnTp305JNPWh0HAAAAAAAAAABJ3PkTAAAAAADLnTx5UuPGjdOCBQtUtWpVLV26VO3atZPNZrM6GrLZ8ePH1axZM+XNm1dRUVF6+OGHrY6UbS5cuKBOnTqpTZs26tOnj9VxknzyySc6duyYVq9ebXUUAAAAAAAAAACSOOSdP99++23ZbLakny5dutwzz8aNGzVs2DAlJibqtddeU7ly5eTh4aEyZcqodevW2rdvX7rXn5iYqOnTp6d4Z41Vq1Zp0qRJunPnTrLXV65cmSxzsWLF0r1+R8KxQE7laHULx0BdAKljjMBZZEWtjh07Ntk15t8/jz/+eNI81CrS46+//tLQoUNVtWpVrV+/XnPmzNG+ffvUvn17Gj9zoV27dqlevXoqWrSotm3blqsaP40x6tGjh1xdXTV//nyr4yS5deuWxo4dq7fffls+Pj5WxwEAAAAAAAAAIIlDNn9KUpEiRbRu3TodPnxYCxYsSDZt5MiRmjlzpgIDA5WYmKjvv/9eixcv1qVLlxQREaGbN2/q+eef15kzZ9K83qNHj+r555/XwIEDFRsbe8/0V199VR4eHnrxxRd15cqVpNdbt26tU6dOadu2bWrRokXaN9iBcSyQ0zhi3cJ61AWQOsYInEVW1uqDUKtIi2vXrmnSpEny8fHRl19+qYkTJ+rw4cN666235OLiYnU8WOC7777Tiy++qCeeeEIbN27MdX/IOGnSJK1fv15LlixRkSJFrI6TJDg4WJcvX1ZgYKDVUQAAAAAAAAAASMZhmz89PT3VvHlzValSRe7u7kmvT5w4UUuWLFFoaKgKFiwoSapXr54aNGigfPnyqUKFCho3bpxiYmL02WefpWmde/fu1dChQ9WnTx89+eST950vICBATzzxhFq0aKGEhARJks1mU5kyZdSwYUNVrlw57RvswDgWyEkctW5hLeoCSB1jBM4iK2tVkhYuXChjTLKfAwcOJJuHWsWDxMbGatKkSSpfvrwmT56swMBAHT16VAEBAcl+30Lu8vXXX+uVV15Rq1attHbt2qRzWG6xfft2jRgxQuPHj1e9evWsjpPkypUrmjx5sgYOHKhSpUpZHQcAAAAAAAAAgGQctvkzJceOHdPw4cM1atQoeXh4SJJcXV21evXqZPNVrFhRknT8+PE0Lf+JJ55QWFiYOnfu/MAv3YKCgvTTTz9pxowZaVpHTsGxgDOibpES6gJIHWMEziKrazUtqFWk5NatW5o5c6Z8fHw0btw49e/fX7/99puGDBkiT09Pq+PBQtOnT1e7du3Up08fLVy4UG5ublZHylaXLl1S586d9Y9//EODBg2yOk4ykydPls1mc7hcAAAAAAAAAABITtb8OXPmTBlj9Oqrr6Y6382bNyVJXl5eWZalcOHCatSokWbMmCFjTJatx1FxLOCMqFukhLoAUscYgbOgVuGo4uLiNHfuXFWuXFlDhw6Vv7+/jh8/rlGjRmVpHcLxGWM0ZMgQDRo0SMOHD9e0adNks9msjpWtjDHq3r27EhMT9fnnnzvU9p89e1YzZ87UsGHD5O3tbXUcAAAAAAAAAADu4VTNn998842qVq2qfPnypTrfzp07JUkNGjTI0jy1atXS6dOntXfv3ixdjyPiWMAZUbdICXUBpI4xAmeRHbU6bNgwFS5cWHnz5lWFChXUpk0bRUdHpzgvtYr4+Hh98cUXeuyxxzRgwAC1aNFCR48e1bRp01S8eHGr48Fit2/flr+/v4KDg7Vo0SIFBQVZHckSEyZM0Lp167RkyRIVLVrU6jjJjBo1SkWKFNE777xjdRQAAAAAAAAAAFLkNM2fN27c0G+//SYfH5/7znPu3DktWbJEAQEBqlev3gPv+pNRlStXliTt378/S9fjaDgWcEbULVJCXQCpY4zAWWRHrb7xxhtatWqV/vjjD12/fl1fffWVTp48qUaNGungwYP3zE+t5l6JiYlatmyZqlevrp49e6p+/fo6dOiQ5s2bpzJlylgdDw7g8uXLatq0qTZs2KD169fL39/f6kiW2Lp1q0aOHKnJkyerfv36VsdJ5vDhw1qwYIHGjBkjDw8Pq+MAAAAAAAAAAJAiV6sD2Ov8+fMyxqR6J5969erpxo0b8vPz09ixY+Xm5palmf7Ocu7cuSxdj6PhWMAZUbdICXUBpI4xAmeRHbX68MMP6+GHH076d926dfXpp5/qySef1OzZszVnzpxk81OruU9iYqLCwsI0fPhwHT16VL6+vlq7dq0qVapkdTQ4kBMnTujll1/WtWvXtGXLFtWsWdPqSJY4f/68OnXqpJdfflkBAQFWx7nHkCFDVK1aNXXp0sXqKAAAAAAAAAAA3JfTNH/eunVLkuTu7n7feUqUKKEFCxaoevXq2ZLJ09MzWbbcgmMBZ0TdIiXUBZA6xgichVW1WqNGDbm4uOjIkSP3TKNWcw9jjNasWaMRI0Zo37598vX11apVq1SlShWro8HB7Nu3Ty1atFCRIkUUFRWlsmXLWh3JEomJiXr99dfl5uamzz77TDabzepIyURFRWnVqlVau3atXFxcrI4DAAAAAAAAAMB9Oc1j3//+8vTOnTv3nad48eIqVKhQdkVSXFycpP9myy04FnBG1C1SQl0AqWOMwFlYVauJiYlKTExMsemUWs0dNm7cqDp16qh169YqW7asfvzxR4WGhtL4iXt8++23atiwoapVq6aIiIhc2/gpSaNHj9bWrVsVFhamIkWKWB3nHoMHD1ajRo3UvHlzq6MAAAAAAAAAAJAqp7nzZ4kSJWSz2RQTE3PfeVavXp2NiZSUpWTJktm6XqtxLOCMqFukhLoAUscYgbPIjlpt1qyZ1q9fn+y16OhoGWNUr169e+anVnO2jRs3KjAwULt27dIrr7yiTz75RLVq1bI6FhzUZ599prfeekudOnVSSEiI3NzcrI5kmc2bN2vs2LEKDg5W7dq1rY5zj7CwMP3www+Kjo62OgoAAAAAAAAAAA/kNHf+zJcvnypWrKhTp06lOP3YsWMqWbKkOnTocM+0jh07qmTJkvrxxx8zNdPfWWrUqJGpy3V0HAs4I+oWKaEugNQxRuAssqNWT58+rSVLlujKlSuKj49XZGSkevbsqXLlyqlPnz73zE+t5kwRERFq3LixmjZtKm9vb0VHR2v16tU0fiJFxhgFBQWpe/fuGjhwoD799NNc3fh57tw5de7cWW3bttU777xjdZx7JCQkaPjw4fL393fIxlQAAAAAAAAAAO7mNM2fkvTKK6/o4MGDunnz5j3TjDH3fV9cXJzOnz+v8PDwVJcfFRWlBg0a6KGHHtKOHTu0d+9elS5dWs8995y2bdt2z/zR0dEqU6aMatasmfaNcXIcCzgj6hYpoS6A1DFG4CyyulabN2+uDz74QGXLllW+fPnk5+en5557TlFRUSpatOg981OrOUtERIReeOEFNWzYUG5ubtqxY4e+/fZbGsRwXwkJCerdu7fGjh2ruXPnauLEibLZbFbHskxiYqK6dOmi/PnzKyQkxOo4KZo/f76OHz+u0aNHWx0FAAAAAAAAAAC7OM1j3yWpf//+mjNnjsLCwtSlS5dk0ypXrqxz586l+L7ly5ercePGKl++fKrLr1u3riIiIuzKcvHiRW3atEljx47NlV/gcCzgjKhbpIS6AFLHGIGzyOpanTJliqZMmWJXFmo154iMjNT48eO1Zs0aPffcc9q8ebMaN25sdSw4uOvXr8vPz0/btm1TeHi4XnnlFasjWW748OGKiIjQ9u3b5e3tbXWce1y/fl1jxoxRv3795OPjY3UcAAAAAAAAAADs4rB3/rx586bWr1+vo0ePKi4uTpJUqVIljR49WqNHj9b169ftWs6dO3e0cuVKXbt2TR07dsy0fEFBQXryySf17rvvSvrP3YTOnDmjiIgIHTt2LNPW4wg4FsgpHLluYR3qAkgdYwTOglpFZoqMjFTz5s1Vv359Xb16VVu3bk165DuQmrNnz6pRo0bas2ePtm7dSuOnpE2bNmnSpEkKDg7WU089ZXWcFH344Ye6deuWAgMDrY4CAAAAAAAAAIDdHLb589KlS2revLmqVKmiHj16JL0+bNgwtW/fXh07dlRMTMwDl7NlyxaFhYVp3bp1ypcvX6ZkmzZtmn766SetXbtWbm5ukqTw8HCVKVNGDRs21DfffJMp63EUHAvkJI5at7AWdQGkjjECZ0GtIqO+//57NW3aVPXr19e1a9f07bffauvWrXr++eetjgYn8PPPP6tevXq6evWqvv/+e9WuXdvqSJY7deqU/P391a5dO7311ltWx0nR+fPnNX36dA0dOlRFixa1Og4AAAAAAAAAAHazGWNMWt4QGhqqDh06KI1vy3QbNmzQd999p4kTJ2bresPDw/Xzzz/rn//8p1xcXLJ13Xdr3769JGnZsmWW5uBY/IejHI+sktO2j7rNPDabTUuXLpWfn5/VUTKMusg8jnK9kF7Onj+rMEYcT077fM4s1KpjcuR6jYiI0KRJk5Ie7z5kyBC1atXK6lhwIpGRkXr11VdVqVIlrVq1SsWLF7c6kuXi4+PVuHFjXbp0SdHR0SpQoIDVkVL09ttva82aNTpy5Eim/SEAAAAAAAAAAADZYJnTNn/Csb88zY1y+vHI6duH9MtJzZ/IPM5+veDs+ZF78PkMZ+KI9RoREaGRI0fqu+++o+kT6RYWFqYuXbro5Zdf1qJFi+Tp6Wl1JIcwYMAAffLJJ9qxY4eqV69udZwUHT58WI8//rhCQkLUrVs3q+MAAAAAAAAAAJAWyxz2se8AAAAAAGSFjRs3ql69emrYsKFu376tTZs2KSIigsZPpFlwcLD8/Pz01ltvafny5TR+/n/h4eGaOXOm5syZ47CNn5I0dOhQVatWTa+//rrVUQAAAAAAAAAASDOaPwEAAAAAucLGjRv17LPPqmnTpipQoIAiIyMVERGhF154wepocDLGGP3zn//Ue++9p+HDhys4OFh58vBfLJJ05MgRde3aVX369FHXrl2tjnNfUVFRCg8P1+TJk+Xi4mJ1HAAAAAAAAAAA0szV6gAAAAAAAGQVY4zWrFmj0aNHa9euXXrppZe0c+dOPf3001ZHg5O6ffu2unbtqvDwcC1evFgdO3a0OpLDuHHjhtq2batHH31U06ZNszpOqgYPHqxGjRqpefPmVkcBAAAAAAAAACBdaP4EAAAAAOQ4iYmJ+uabbxQUFKQ9e/bolVdeUXR0tOrUqWN1NDixS5cuqU2bNjpw4IA2bNig559/3upIDqVv3746e/asdu3aJXd3d6vj3FdYWJh++OEHRUdHWx0FAAAAAAAAAIB0S3fzZ2hoaGbmQDqcOnVKEsfCUZw6dUply5a1OkaWOnXqFPWGFEVGRlodAQ4mp9QE5zw4Oq4H4Uyy63o5MTFRYWFhGjlypA4fPqwWLVooJCRETz31VJavGznbb7/9ppdfflm3b9/W9u3bVa1aNasjOZQ5c+boyy+/1Jo1a1ShQgWr49xXfHy8AgMD1bFjR9WuXdvqOAAAAAAAAAAApFu6mz87dOiQmTmQARwLx9GuXTurI2SpqKgo6g0pmjFjhmbMmGF1DCDTcc6Ds6BW4Syy8nr576bP4cOH6+jRo/L19VVYWBgNesgUO3bsUOvWrVWmTBlt3rxZpUuXtjqSQ4mOjtbAgQM1fPhwvfzyy1bHSdXcuXN14sQJrV271uooAAAAAAAAAABkiM0YY6wOAQAAAABAesTHx+urr77SuHHjdOzYMfn6+mrMmDGqWrWq1dGQQ4SFhen1119XkyZNtHTpUhUoUMDqSA7l8uXLql27tipWrKj169fLxcXF6kj3deXKFVWuXFk9evTQpEmTrI4DAAAAAAAAAEBGLMtjdQIAAAAAANLq5s2bmjVrlipXrqxevXrp+eef19GjRxUaGkrjJzJNcHCw/Pz81KVLF4WHh9P4eZfExER17txZCQkJ+uqrrxy68VOSxo4dK0kKDAy0OAkAAAAAAAAAABmX7se+AwAAAACQ3WJiYjR79mwFBwfr2rVr6tGjh95//32VL1/e6mjIQRISEhQQEKB58+Zp/PjxGjJkiNWRHNKYMWO0ceNGbd68WcWLF7c6Tqp+++03zZo1S1OnTpW3t7fVcQAAAAAAAAAAyDAe+w4AAAAAcHgXLlzQ7NmzNXPmTDiLuEgAACAASURBVCUkJKh79+4aMmSIHnroIaujIYe5du2aOnbsqK1bt2rRokVq3bq11ZEc0qZNm9SsWTMFBwfrnXfesTrOA/n5+Wnfvn3av3+/3NzcrI4DAAAAAAAAAEBGLePOnwAAAAAAh3XixAlNnz5dISEhKlCggN59910FBASocOHCVkdDDnT69Gm1bNlS586d05YtW1SnTh2rIzmkP/74Q/7+/mrXrp1TNH5GRUVp+fLlCg8Pp/ETAAAAAAAAAJBjcOdPAAAAAIDDOXDggCZPnqyvvvpKZcqU0XvvvadevXopX758VkdDDrVz5061bt1axYoV0zfffKNy5cpZHckhxcfHq0mTJvrrr7+0c+dOeXl5WR0pVcYYNWzYUG5ubtq8ebPVcQAAAAAAAAAAyCzc+RMAAAAA4Dh+/PFHTZw4UcuXL1f16tW1YMECderUSa6u/PqKrPP111+rS5cueu6557Rs2TJ5e3tbHclhDRw4UHv37nWKxk9JCg0NVWRkpHbu3Gl1FAAAAAAAAAAAMlUeqwMAAAAAABAREaFWrVqpdu3aOn78uD777DPt3btXXbt2pfETWSo4OFjt2rVTp06d9M0339D4mYqFCxdq9uzZWrBggapVq2Z1nAeKi4vTv/71L73++uuqXbu21XEAAAAAAAAAAMhUNH8CAAAAACyRmJio1atX69lnn1XDhg11+fJlrVq1Srt371bXrl2VJw+/siLr3LlzR/369dN7772n4cOHKyQkRG5ublbHclh79+7V22+/rUGDBsnPz8/qOHYJDg7WmTNnNHr0aKujAAAAAAAAAACQ6bh9CgAAAAAgW8XFxWnJkiWaMGGCjhw5ohYtWmjHjh165plnrI6GXCImJkYdOnTQ999/rxUrVqhNmzZWR3Joly9fVtu2bfXss89qwoQJVsexy6VLlzRx4kQNHjxY5cqVszoOAAAAAAAAAACZjuZPAAAAAEC2uHHjhj755BNNmTJF586dU8eOHbVixQqneHw0co5ff/1VrVq10uXLl7V161bVqVPH6kgOLTExUZ07d1Z8fLyWLFkiV1fn+K+kkSNHytXVVYMHD7Y6CgAAAAAAAAAAWcI5/sceAAAAAOC0zp07p9mzZ2v27NmKi4tTr169NHDgQJUtW9bqaMhlIiMj1aZNG5UqVUpRUVHcEdIOI0aM0MaNG7V582aVKFHC6jh2OXz4sObNm6c5c+bIy8vL6jgAAAAAAAAAAGQJmzHGWB0CAAAAAJDz7N+/X9OnT9fixYvl5eWlvn37qn///ipatKjV0ZALLV26VN27d1fjxo21ZMkSmgLtsHr1arVp00Yff/yxevXqZXUcu7Vu3VrHjh3T3r17neZOpQAAAAAAAAAApNGyPFYnAAAAAADkLBEREWrVqpWeeOIJRUREaNKkSTpx4oSCgoJo/ES2M8YoKChI/v7+6tWrl9asWUPjpx2OHj2q119/XZ07d3aqxs8tW7Zo1apVmjZtGo2fAAAAAAAAAIAcjTt/AgAAAAAy7Pbt21q6dKk+/PBDHThwQM8995yGDBmili1bymazWR0PudStW7f05ptvKjQ0VDNnzlSfPn2sjuQUrl+/rnr16snNzU3bt2+Xp6en1ZHskpiYqGeeeUbFixfXunXrrI4DAAAAAAAAAEBWWsYtEAAAAAAA6Xb+/Hl9+umnmjlzpv766y916NBBixcvVo0aNayOhlzu7Nmzat26tY4fP64NGzaoSZMmVkdyGm+++abOnDmjXbt2OU3jpyQtXLhQP/30k/bs2WN1FAAAAAAAAAAAshzNnwAAAACANDty5Ihmz56tkJAQFShQQD169FD//v1VpkwZq6MB2rdvn1q1aqW8efPqhx9+UNWqVa2O5DSmTJmisLAwffPNN6pQoYLVcex248YNffDBB+rRowfN5wAAAAAAAACAXCGP1QEAAAAAAM4hMTFR69at0z/+8Q89+uij2rhxo4KDg/X7779r4sSJNH7CIaxbt04NGzZUlSpVtHPnTho/02Dz5s0aNmyYJkyYoGbNmlkdJ00mTZqkmJgYjR492uooAAAAAAAAAABkC5o/AQAAAACpiomJ0fz581WjRg21aNFCsbGxCg8P14EDB9SrVy+neiw0crbg4GC1bNlSfn5+Wrt2rQoXLmx1JKfxxx9/qGPHjmrZsqUGDx5sdZw0OXXqlKZOnaoRI0aoVKlSVscBAAAAAAAAACBb2IwxxuoQAAAAAADHs3v3bs2fP1+LFi1Snjx55O/vr379+vFIZTic27dvq0+fPvriiy80depUBQQEWB3JqcTHx6tJkyb666+/tHPnTnl5eVkdKU06duyoXbt26eDBg3J3d7c6DgAAAAAAAAAA2WGZq9UJAAAAAACO4/bt21q1apXmz5+vjRs3qmrVqho+fLh69+6tQoUKWR0PuMe5c+fk6+ur/fv3a9WqVWrRooXVkZxOv379tH//fqds/IyMjFRoaKhWrlxJ4ycAAAAAAAAAIFeh+RMAAAAAoNOnTyskJESzZ8/W1atX1bp1a3377bd68cUXZbPZrI4HpGjfvn1q3bq1XFxc9MMPP6h69epWR3I68+bNU0hIiFasWKGqVataHSdNEhMTFRAQoCZNmujVV1+1Og4AAAAAAAAAANmK5k8AAAAAyKUSExP13Xffaf78+VqxYoVKlCihN998U/369VPZsmWtjgekKiwsTG+88YaeeuophYWFqXjx4lZHcjqRkZEKCAjQiBEj1KZNG6vjpNnnn3+uH3/8UXv27LE6CgAAAAAAAAAA2c5mjDFWhwAAAAAAZJ+LFy9qwYIF+vjjj3XixAm9+OKL6tu3r1q1aiVXV/5GEI7NGKPJkycrMDBQPXv21KxZs+Tm5mZ1LKdz9uxZ1alTR3Xq1NHXX3+tPHnyWB0pTa5fv64qVarotdde0+zZs62OAwAAAAAAAABAdluW5ubP0NBQdejQIasCAU6tXbt2WrZsmdUxskT79u21fPlyq2MAcDLO+jcmXO8AQNbIydfLyB63bt1Sz549tXTpUk2bNk39+/e3OpJTunXrlho1aqSYmBjt2LFD3t7eVkdKs2HDhmnevHk6cuSIihUrZnUcAAAAAAAAAACy27J039Jl6dKlmRkEcHrTp0+3OkKWq1u3rt577z2rYwBwApGRkZoxY4bVMTKM6x0AOZUxRnFxcXJ3d8+2deaG62VkrdOnT6tNmzb67bfftH79er3wwgtWR3Ja/fr106FDhxQVFeWUjZ+//fabZsyYoYkTJ9L4CQAAAAAAAADItdLd/Onn55eZOQCnlxvuYFS2bFnGPgC75YTmT855AJB5csP1MrJOZGSk2rZtq2LFiik6OloVKlSwOpLT+uijj/Tpp58qPDxcjz32mNVx0mXw4MF65JFH1LdvX6ujAAAAAAAAAABgmTxWBwAAAAAAALifr776Si+++KJq1aqliIgIGj8zYPv27Ro8eLBGjx6tli1bWh0nXbZs2aIVK1Zo2rRpcnNzszoOAAAAAAAAAACWofkTAAAAAAA4nDt37mjo0KHq1KmTevXqpTVr1jjlI8odxcmTJ9W2bVu1aNFCgYGBVsdJl8TERA0ePFgvvfSSXn75ZavjAAAAAAAAAABgqXQ/9h0AAAAAACArXLlyRZ06ddLmzZu1aNEiderUyepITu3WrVtq166dihYtqs8//1w2m83qSOkSEhKivXv36qeffrI6CgAAAAAAAAAAlqP5EwAAAAAAOIxDhw6pTZs2unHjhrZu3apnnnnG6khOr2/fvjp27Jh27twpLy8vq+Oky9WrVxUUFKR33nlH1atXtzoOAAAAAAAAAACW47HvAAAAAADAIaxdu1b169dX0aJFFR0dTeNnJpg6dao+//xzLVq0SJUqVbI6TrqNGjVKcXFxGj58uNVRAAAAAAAAAABwCFne/Nm7d2/lz59fNptNbm5ueuKJJ3To0KFk8/z73/9WuXLlZLPZVLJkSX322WdZmmnt2rXy9vbW6tWrs3Q96dWzZ08VLFhQNpstzY8yi4qKUrVq1ZQnT56k/Tl27NgsSpo+YWFhqlixomw2m2w2m0qVKqUuXbpYHQsOzFHG7JQpU1SiRAnZbDZ9/PHHWbKOCRMmyNvbO13jPzvFx8dr/PjxqlSpkvLmzatChQrp8ccf14kTJ9K1vL1796pjx46qUKGC3N3dVaxYMT3xxBMZOn9ldd1YfS5zlloBnNH9rsUc5fPob5l9Lpakw4cPq3///qpevboKFiwoV1dXeXt7q0qVKnrllVcUGRmZeRvg4O4+z6f088gjj1gdMxlnqV0gJcYYTZo0Sa1atVLLli21adMmlS5d2upYTm/Tpk0aOnSoJk6cqJdfftnqOOl2/PhxzZ49W2PGjFHRokWtjgMAAAAAAAAAgEPI8ubPefPmJX1JXLt2be3du1fVqlVLNk+PHj30/fff66GHHtKpU6fUrVu3LM1kjMnS5WfUJ598opCQkHS9t27dujp06JD+8Y9/SPrPF/gffPBBZsbLMF9fX/3666/y8fGRt7e3/vzzT3355ZdWx4IDc5QxO3jwYP3www9Zuo5hw4Zp3rx5WbqOzNChQwd98cUXWrRokWJjY3Xo0CH5+Pjo+vXraV7W/v37Vb9+fZUqVUqbN29WTEyMfvjhBzVv3lxbtmxJd8asrhurz2XOUiuAM7rftZijfB79LTPPxZK0YMEC1ahRQ/v27dO0adP0xx9/6MaNG9qzZ4/GjBmjK1euaP/+/Zm8FY7r7vO8MUbGGCUkJCg2Nlbnzp1Tvnz5rI6ZjLPULnC369evq3379vrggw80fvx4LVy4UJ6enlbHcnq///67/P399eqrr2rw4MFWx8mQAQMGyMfHR2+99ZbVUQAAAAAAAAAAcBiu2bGSmjVrqkGDBoqIiNCPP/6op5566p55Pv74Y/Xo0UNubm5ZnueVV15RTExMliz75s2bevHFF7O8QcyZsE+QkrTURVaOWaTdkiVLtHLlSu3du1c1atSQJJUuXVrh4eHpWt6UKVNUqFAhzZgxI+m1KlWqaMyYMfL19U02L3WDnIzPS8fnSOeVzD4XR0VFqXfv3mrUqJHWr18vV9f//ppQsWJFVaxYUYUKFdLRo0ftXmZOrWkXFxd5enrK09NTVapUsTqOXRypdoG7HT9+XK+99prOnj2r9evX64UXXrA6Uo5w48YNtW7dWmXKlNHChQtls9msjpRu69ev15o1a7Rhw4Zkn08AAAAAAAAAAOR2WX7nz7/169dPkjR79ux7psXFxemLL75Q7969sytOllmwYIHOnz+f4eU48xczd8usfYKcxcq6MMZo2bJlmj9/viXrd3Zz587VU089ldRslFEXL15UTEyMLl26lOz1vHnz3vN4WuoGOVlm1Te1mjmy41osI8cqs8/FY8eO1Z07dzRhwoT7NtY0a9Ys6ZreHrmhpleuXGl1hHs4eu0C/2vr1q2qV6+eXFxcFB0dTeNnJjHGqFu3bjp9+rS+/vprh7tLcVrExcVpwIABatOmjZo2bWp1HAAAAAAAAAAAHEq2NX/6+vrqoYce0pIlS3TlypVk05YvX65nn31WZcuWlSR9//33euyxx+Tt7S0PDw/VqFFD69evT/aehQsXqk6dOvLw8FD+/Pn1yCOPaMyYMQ+cHhERoXLlyslms2nWrFmSpDlz5ih//vzKly+fwsPD9fLLL8vLy0tly5bVV199lWy9qWUbMGCABg0apOPHj8tms6lSpUqSpDt37mjEiBEqV66cPD09VbNmTS1dujRpmcYYffjhh6patarc3d3l7e2t999//559+H//93/y8vLSuHHj0rz/7d3GmTNnysPDQyVKlNDbb7+t0qVLy8PDQ/Xr19eOHTuS5nv33XeVN29elSpVKum1d955R/nz55fNZtNff/2V6j5Jq9T2e8+ePWWz2WSz2eTj46M9e/ZIkrp37658+fLJ29tbq1atkpT6sZg8ebLy5cunggUL6vz58xo0aJDKlCmjw4cPpysz/vNl7jPPPKN8+fLJy8tLNWrU0NWrV1Osi/vt/wULFmRozN65c0fjx49X1apV5enpqWLFiqlChQoaP368/Pz8MmU7jTGaNm2aqlWrJnd3dxUuXFht2rTRL7/8kq757nbu3Dk98sgjcnV1VfPmzSXZPwbtHdP2iouLU1RUlJ588skHzmvvOevpp5/WjRs39MILL2j79u33nS8n1E1uqpXcKrXrk6y4hrC3Vu2pqfuNp4YNG9r9OWuv1LYrLWP1Qfs8LWPuQddiGb2GzMzzSmafi+Pi4rRp0yYVLVpUzzzzjN05qOnkqF0gbebPn6+mTZvqxRdf1Pbt2/XII49YHSnHGDVqlMLDwxUaGur0+zU4OFgnTpzQtGnTrI4CAAAAAAAAAIDjMWm0dOlSk463GWOMCQoKMpLMtGnTkr3eoEEDs3HjxqR/L1u2zAQFBZlLly6Zixcvmrp165qiRYsmTZ8+fbqRZCZMmGAuXrxoLl26ZObNm2c6d+5s1/Q//vjDSDIfffRR0jL/9a9/GUlm06ZNJiYmxpw/f940bNjQ5M+f38TFxdmdzdfX1/j4+CTbvsGDBxt3d3ezfPlyc/nyZRMYGGjy5MljoqOjk9Zts9nM1KlTzeXLl01sbKyZPXu2kWT27NmTtJw1a9aYggULmtGjRz9wXzdr1sxIMpcvX07zNvbu3dvkz5/f/Pzzz+bWrVvm4MGD5umnnzYFCxY0J0+eTJqvc+fOpmTJksnW++GHHxpJ5sKFC6nuE2OM8fHxMd7e3g/cFmPs2+8uLi7m9OnTyd7XqVMns2rVqqR/23MsJJmAgADz0UcfmbZt25pDhw7ZlbFdu3amXbt2ds3rjNK6fdevXzdeXl5m0qRJ5ubNm+bPP/80bdu2TaqNlOrifvs/I2N23LhxxsXFxYSHh5vY2Fize/duU7JkSdO4ceN07YejR48aSWbu3LlJr40YMcLkzZvXLFy40Fy5csXs27fPPPXUU6ZYsWLmzz//TPN8X331VbLxHxcXZ3x9fU14eHiyLPaOQXvHtD1+++03I8k8+eSTpnHjxqZUqVLG3d3dPProo2bWrFkmMTExaV57z1mxsbGmTp06RpKRZB577DEzadIkc/HixXvmdcS6Scu5LDfVSkauFxxBevI/6PojK64h7K1Ve2vqfuPJ3s9Ze9n7efygsfqgfZ6W7bbnWsxRPo8y+1x85MgRI8nUrVs3TTlyS02ndJ4PCAgw+/fvv2efULupy+nXy7DPrVu3TLdu3YyLi4uZOHFisnMWMi4sLMzYbLZkv684qz///NN4e3ubESNGWB0FAAAAAAAAAABHFJqtzZ9nz541bm5upkqVKklf8Ozbt888+uijqb5v/PjxRpI5f/68iYuLM4UKFTJNmjRJNk9CQoKZMWPGA6cbk/qXnzdv3kx67e8vTo8dO2ZXNmPu/ZL75s2bJl++fKZjx45Jr8XGxhp3d3fTt29fExsba/Lly2eaNm2abLl3N/SkVWrNnw/axt69e9/zBXd0dLSRZEaNGpX0WnY2f97t7v2+ceNGI8mMHTs2aZ6YmBhTuXJlk5CQYIx58LEwJuV9ZK+c/mV2WrfvwIEDRpJZs2ZNitNTa+K7e/9nZMw+/fTT5plnnkm2vLfeesvkyZPH3L592+7t+dvdzZ+xsbGmQIECyerKGGN27txpJCU129g7nzHJx398fLzx9/c369atuydLWhr67BnT9ti/f7+RZJo2bWq2b99uLl68aK5cuWKGDh1qJJkvv/wyTcv7W1xcnAkODjaPPvpoUhNoiRIlzJYtW5LN54h1Y++5LLfVSm5r/rTn+uNuGb2GMMa+Wk1LTd1vPNnzOWuv9H4e3z1WH7TP0zLm7L0Wc5TPo8w+F+/atctIMi+99FKa3ne3nFrTPj4+SZ9N//uTWvMntZuynH69jAc7deqUeeaZZ4yXl1e6/ngAqduzZ4/Jnz+/6devn9VRMsXrr79uHn74YXP9+nWrowAAAAAAAAAA4IhCs+2x75JUqlQp+fr66siRI9q4caMkae7cuerTp0+q73Nzc5P0n0cO7tu3T1euXFGzZs2SzePi4qKAgIAHTk+LvHnzSpLi4+PtypaSw4cPKzY2Vo8//njSa56enipVqpR++eUXHTt2TLGxsXrxxRfTlC2z2LONklSnTh3ly5fvgY8czi537/cXXnhBVapU0b///W8ZYyRJS5YsUceOHeXi4iLpwccCmatixYoqUaKEunTpoqCgIJ04cSLL15lSPd+6dSupJv52584dubm5JdVGRhw8eFDXr19XnTp1kr3+9NNPK2/evEmPy7Z3vrtzdurUSSVKlEh6hHdmSe+Ydnd3lyRVr15d9evXV5EiReTt7a1Ro0bJ29tb8+fPT1ceNzc3vfvuuzp06JCioqLUpk0bnT9/Xu3bt9fly5fTtUx7ZVfd5LZayW3Sc/2R0WsIyb5aTU9N3c2ez1l7pffz+O6x+qB9bu92Z8W1WFafVzL7XFygQAFJUmxsbJred7ecXNPe3t4yxiT9pOX3CmoX+I9t27apdu3aun79unbv3q1WrVpZHSlHOXfunFq3bq3atWtr6tSpVsfJsMjISH355ZeaPn268ufPb3UcAAAAAAAAAAAcUrY2f0pSv379JElz5szRtWvX9PXXX+uNN95INs8333yjxo0bq3jx4nJ3d9c///nPpGlXr16VJBUqVCjF5T9oekalli0lN27ckCR98MEHstlsST+///67YmNjderUKUlS8eLFsyRvZnJ3d9eFCxcsWfeD9rvNZtPbb7+tX3/9VZs2bZIkffHFF3rzzTeT5nnQsUDm8vT01HfffacGDRpo3Lhxqlixojp27KibN29ma44WLVpo9+7dCg8P182bN7Vr1y6tXLlSLVu2zJSGhStXrkj6b+PM/ypUqJCuXbuWpvn+V79+/XT06FF9/PHH+vnnnzOc9W7pGdOlS5eWJP3111/JXs+bN6/Kly+v48ePZzjXs88+q6+//lp9+vTRhQsXtHnz5gwvM62yom5yW63kNvZcf2T2NYRkX62mp6buZs/nrL0y6/P4Qfvc3u3OrmuxzDyvZPa5+JFHHpGHh4eOHDmSpvfl5pqeMWNGsibWtMjNtYvcKzg4WC+99JLq16+vqKgoVapUyepIOUp8fLw6dOggFxcXhYWFJTVyO6vExEQFBASoSZMm8vX1tToOAAAAAAAAAAAOK9ubP5977jnVqlVLq1ev1oQJE9S6dWt5e3snTT958qRee+01lSpVSjt27FBMTIwmTZqUNP2hhx6SdO+X3fZOz4gHZUvJ31/GTp8+PdndgowxioyMlIeHhyTp9u3bmZ43M8XHx+vKlSsqW7Zstqxv27Ztmj59uiT793u3bt3k4eGhTz75RIcPH5aXl5fKly+fNP1BxwKZr3r16lq9erXOnDmjIUOGaOnSpZoyZUq2ZggKCtILL7ygbt26ycvLS23btpWfn59CQkIyZfl/N26k1Gjyv2PG3vn+l5+fn7799lsVKlRIXbt2VUJCQqZkltI/pgsUKKDKlSun2GCYkJCQ7HxuL19f3xS37fXXX5eU8TvRpUdm1c3/nstyW63kNg+6/siKawjJvlpNT02l5EGfs/bKrM/jB+1ze7c7u67FMvPzKLPPxe7u7mrWrJn++usvbd++/b7zXbp0ST179pRETWdEbq5d5D63bt1S9+7d9d5772ngwIFavny5ChYsaHWsHOedd97Rjz/+qFWrVqlYsWJWx8mwkJAQ7dmzRzNmzLA6CgAAAAAAAAAADi3bmz+l/3wxcefOHU2cOFF9+/ZNNm3//v2Kj49X3759VbFiRXl4eMhmsyVNf+SRR1SkSBFt2LAhxWU/aHpGPChbSh5++GF5eHjop59+SnH6448/rjx58mjr1q2ZnjczbdmyRcYY1a1bN+k1V1fXBz4uPr12796d9Gg3e/d74cKF1aFDB61cuVJTpkxRr169kk1/0LFA5jpz5kxSU0rx4sU1YcIEPfXUU1lyV8LUHDx4UMePH9eFCxcUHx+vkydPas6cOSpcuHCmLP/xxx9XgQIFtGvXrmSv79ixQ3Fxcapdu3aa5vtfTZo0UbFixTR//nzt3r1bY8eOTTY9I2MwpTFtrw4dOmjPnj369ddfk16LjY3V77//rho1aqR5ebdv306xLg4fPixJqlmzZpqXmVGZVTf/ey7LjbWSmzzo+iMrriEk+2o1PTWVkgd9ztorsz6PH7TP0zLmsuNaLLM/jzL7XBwUFCR3d3cNHDjwvnfpPnDggFxdXSVR0387e/asunfvnqb35PbaRe5x8uRJNWzYUKtXr9a6des0ceJE5cljyX9B5GhTp07VggULtHjx4nTfkdiRXL58WR988IH69++frs8zAAAAAAAAAAByE0u+eenUqZOKFCmi55577p6mnnLlykmSNm7cqFu3buno0aPasWNH0nR3d3cFBgZq27Ztevfdd3X69GklJibq2rVr+vnnnx84PSMelE2SihQpojNnzujEiRO6du2aXFxc1L17d3311VeaM2eOrl69qjt37ujUqVM6e/asihcvLl9fXy1fvlwLFizQ1atXtW/fPs2fP/+e9a9bt05eXl4aN25chrbDHomJibp8+bISEhK0b98+DRgwQOXKlVO3bt2S5qlUqZIuXbqklStXKj4+XhcuXNDvv/9+z7Lu3iepNSDFx8fr3Llz2rJlS1LDlD37/W99+vTR7du3tWbNGrVq1SrZNA8Pj1SPBTLXmTNn9Pbbb+uXX35RXFyc9uzZo99//z2pgSwtdZER/fr1U7ly5XT9+vUsWb6Hh4cGDRqkFStW6Msvv9TVq1e1f/9+9enTR6VLl1bv3r3TNF9KXn31VXXr1k3jxo3T7t27k163dwxK9o1pew0cOFDly5dXt27ddPLkSV28eFFDhgzRzZs3NXTo0KT50nLOYbu5eAAAIABJREFUeu211xQaGqorV64oJiZG4eHhGjp0qFq3bp3sc8JZ6ialc1lurJXc5EHXH1lxDSHZV6sZqam7pfY5a6/M+jx+0D63d7vTci2WEZn9eZTZ5+Inn3xSixYt0oEDB9SwYUOtXbtWMTExio+P12+//aaQkBC9+eabcnNzk5Q118X27idHqGljjG7evKmwsDB5eXnZ/T6J2kXusG7dOj355JNKSEhQdHS0mjVrZnWkHGnDhg0aMmSIJk+erJYtW1odJ1MMHz5cefLk0YgRI6yOAgAAAAAAAACA4zNptHTpUpOOt93j/fffN4sXL05x2pAhQ0yRIkVMoUKFTPv27c2sWbOMJOPj42NOnjxpjDFm1qxZpkaNGsbDw8N4eHiYWrVqmdmzZyct437TP/roI1OqVCkjyeTLl8+8+uqrZvbs2SZfvnxGkqlcubI5fvy4mT9/vvHy8jKSTPny5c2RI0fsyvbjjz+a8uXLG09PT9OgQQPz559/mtu3b5shQ4aYcuXKGVdXV1O8eHHj6+trDh48aIwx5tq1a6Znz56maNGipkCBAqZBgwZmxIgRRpIpW7as2bt3rzHGmLVr15qCBQuasWPH3ne/RkVFmerVq5s8efIYSaZUqVJm3LhxadrG3r17Gzc3N1OmTBnj6upqvLy8TJs2bczx48eTrevixYumSZMmxsPDw1SoUMH079/fvP/++0aSqVSpUtKxunufzJ071/j4+BhJqf6sWLEiTTXxt1q1aplhw4aluH9SOxaTJk0ynp6eRpJ5+OGHzcKFC++7n1PSrl07065duzS9x5mkdftOnDhh6tevbwoXLmxcXFzMQw89ZP71r3+ZhIQEY8y9dTFw4MAU939Gx+x3/4+9+46PqkzbOH5NOglVgYgUBaQIIoggZUVERBBEikBosiBdSqQJgvQivUsRkLWsQBKUIlUQlhqK0hUM6CplIYQSSoKkPO8fvmQ3lDBJJjkzk9/388kfTp6Zc82c+3nOMXNzzvffm0cffTRZbXl7e5unn37aLF++PFWfwZQpU0xgYKCRZAICAkzTpk2NMcYkJiaaSZMmmRIlShhvb2+TJ08e06RJE3PixIlkz7dn3PLly02ePHmMJPPkk0+ayMhIc+3aNVO4cGEjyWTPnt18/vnnxhj756C9czo1Tp8+bVq1amXy5MljfH19zQsvvGDWrVuXbIw9a5YxxmzcuNEEBQWZ4sWLG19fX+Pj42NKlSplRowYYW7dupVsrDPVzddff53qtSwr1Yqjzhesktb8KZ2fZMQ5hL1rnD01Ze9xMKXjrL1Sel+pmasP+8ztnXP2nIs50/HoDkeuxXf88ccfpn///qZcuXIme/bsxtPT0+TOnds899xzpmPHjmbnzp1JY929pu1d5z/88ENjjKF27eDu58v4q3bHjx9vPDw8TJs2bczNmzetjuS2jh8/bnLnzm3efvttq6M4zNGjR42Xl5dZvHix1VEAAAAAAAAAAHAFITZjjLG/VVQKCQlRUFCQUvk0uJBu3bopNDRUly5dsjpKmjRo0ECzZ89W0aJFM3W7zZs3lySFhoZm6nYzi6u+vzlz5igiIkLTpk1Leuz27dsaNGiQ5syZoytXrihbtmwWJsx4rj6nrZBV68aRteLq5wuukt+KWrXqOOvqsuq6klrUtPNx5D5x1fNJ2Of69etq3769Vq1apTFjxmjgwIFWR3JbV65cUZUqVZQ3b15t2bJFvr6+VkdyiFq1aunGjRvas2ePPDwsuVENAAAAAAAAAACuJNTL6gRwTgkJCVZHsFtcXFzSLUgPHz4sPz8/vryHJOn8+fPq3bu3Dh48mOxxHx8fFSlSRHFxcYqLi8sSzTauNKetltXrhlpxHZlVqxxn0y+rryv2oqadD7ULe504cUJNmjRRVFSUNm7cqFq1alkdyW0lJCSoTZs2unnzpls1fi5ZskTbtm3T7t27afwEAAAAAAAAAMBO/EUdLm/gwIGKiIjQL7/8og4dOmj06NFWR4KTyJYtm7y9vbVo0SJduHBBcXFxOnfunBYuXKhhw4apZcuWOnfunGw220N/WrZsafXbyTDHjx/P8p/B/7KnbnLmzGl1TCDTatWe4yzrSMo4HtnHmWoaf+GYCHusXLlSVapU0SOPPKJDhw7R+JnB+vTpo61bt2rFihUqWLCg1XEcIiYmRoMGDdI777yjF154weo4AAAAAAAAAAC4DK78iWQGDx6sxYsX6/bt2ypatKgmTZqkZs2aWR0rRf7+/ipdurQKFiyojz/+WGXKlLE6EpxErly5tHHjRo0aNUolS5bUzZs3lT17dpUtW1bjx49Xly5d5OXl5fS3dU4Pe+Z06dKl3fozSC176sYdueL6n9VlVq3ac5xlHUkZxyP7OFNN4y9Z9ZgI+yQkJGjIkCGaOHGiOnfurFmzZsnHx8fqWG7tH//4h2bPnq2vvvpKlStXtjqOw4wePVpXr16lGR8AAAAAAAAAgFSymVR+yxwSEqKgoKAs/+U0cLfmzZtLkkJDQy1OkjHc/f0BcCxXP19w9fwA4Iw4n3QfFy5cUKtWrRQeHq558+apXbt2Vkdye1u3blXdunU1aNAgjRw50uo4DnPq1CmVLVtWkyZNUq9evayOAwAAAAAAAACAKwnlyp8AAAAAAMAuO3fuVIsWLeTn56edO3fqueeeszqS2/v111/VokULNWzYUMOHD7c6jkMFBwfrqaeeUrdu3ayOAgAAAAAAAACAy/GwOgAAAAAAAHB+n3zyiV555RU999xz2r9/P42fmeDatWt68803VaRIEX3++efy8HCfP+Ns3LhRa9as0axZs+Tt7W11HAAAAAAAAAAAXI77fGsAAAAAAAAc7vr162rZsqXeffddffDBB1q1apXy5MljdSy3FxcXp6ZNm+rKlStauXKl/P39rY7kMLdu3VKPHj3UokUL1apVy+o4AAAAAAAAAAC4JG77DgAAAAAA7uv48eNq1qyZLly4oHXr1qlOnTpWR8oyevfurT179mjHjh0qWLCg1XEcasKECTp37pw2bdpkdRQAAAAAAAAAAFxWmps/Q0JCHJkDcHlnzpxRoUKFrI6Roc6cOcPcB2CX3bt3Wx3BIVjzAMBxssL5srv56quv1KVLF5UpU0b79+/XE088YXWkLGPKlCn65JNP9PXXX6t8+fJWx3Go33//XRMnTtTIkSOpKQAAAAAAAAAA0iHNzZ9BQUGOzAG4hWbNmlkdIUOFh4cz9wFkKax5AOBY7n6+7C7i4+P14YcfasKECerSpYtmzZolHx8fq2NlGevWrdPAgQM1ceJENWrUyOo4DtezZ08VLVpUwcHBVkcBAAAAAAAAAMClpbn50xjjyBx4CJvNpmXLlqlFixZWR8EDNG/e3OoIGa5Zs2YKDQ21OgYsEhISoqCgINZ/2OVOvbg66h3OhPNBuLqscL7sDs6cOaMWLVroyJEjWrp0qVscz13JsWPH1KpVK7Vr1079+vWzOo7DrVixQmvWrNHmzZvl7e1tdRwAAAAAAAAAAFxamps/AQAAAACA+9iyZYtatWqlPHnyKDw8XGXLlrU6UpZy/vx51a9fX+XLl9e8efOsjuNwMTEx6tu3r9q2batatWpZHQcAAAAAAAAAAJfnYXUAAAAAAABgncTERI0aNUqvvvqqateurf3799P4mcliY2PVpEkTeXl5afny5fLx8bE6ksONHj1aly5d0oQJE6yOAgAAAAAAAACAW+DKnwAAAAAAZFGRkZFq27attm3bppkzZ6pHjx5WR8pyjDHq2LGjfvnlF+3evVt58+a1OpLDRUREaNq0aZo8ebIKFChgdRwAAAAAAAAAANwCzZ8AAAAAAGRB27ZtU6tWreTl5aWtW7eqatWqVkfKkoYNG6awsDCtW7dOJUuWtDpOhujevbvKli2r7t27Wx0FAAAAAAAAAAC3wW3fAQAAAADIQowxmjFjhl599VVVrlxZBw8epPHTIiEhIRo7dqxmzZql2rVrWx0nQyxdulRbtmzR7Nmz5enpaXUcAAAAAAAAAADcBlf+BAAAAAAgi4iKilK7du303XffacyYMXr//fdls9msjpUl7dq1S+3atVP//v3VtWtXq+NkiOvXr6t///7q2LGjqlWrZnUcAAAAAAAAAADcitNe+XPt2rXKlSuXVq9ebXUUAC6INQQAUo+1EwDc27Zt21ShQgUdO3ZM27Zt08CBA2n8tMivv/6qxo0bq27duho/frzVcTLMsGHDFBsbq3HjxlkdBQAAAAAAAAAAt+O0zZ/GGKsjAHBhrCEAkHqsnQDgnv73Nu/PP/+8Dhw4wFUYLXTlyhU1aNBAhQoV0j//+U95eDjtn2bS5ejRo/r44481ceJE5c2b1+o4AAAAAAAAAAC4Haf9hqFBgwaKjo5Ww4YNrY6i2NhYVa9e3eoYLikzPjv2T+rMmTNH3bt317Zt25SYmGh1nAzDGgJHYz1zXd27d9fw4cN1/Phxq6M4PdZOZAWs58hqoqKi1KBBA/Xv31+jR4/WihUr9Mgjj1gdK8uKi4tT8+bNde3aNa1cuVLZs2e3OlKGMMaoZ8+eqlChgjp06GB1HAAAAAAAAAAA3JLTNn86k0WLFikyMtLqGC4pMz479k/qXL58WfPmzVPNmjVVoEABDRgwQAcOHLA6llujRt0D65nrOnHihEaNGqWnn35aZcuW1eTJk3X69GmrY+EhmA/IKKznyEq2b9/Obd6diDFGnTp10t69e7V27VoVLlzY6kgZ5rPPPtOOHTs0f/58t72yKQAAAAAAAAAAVnPKv8Dv2LFDRYoUkc1m0+zZsyX9dbXCgIAA+fv7a+XKlXr99deVM2dOFSpUSEuWLEl67syZM+Xn56f8+fOrW7duKlCggPz8/FS9enXt2bMnaVzv3r3l4+Ojxx57LOmxHj16KCAgQDabTVFRUZKk9957T/369dOpU6dks9n01FNPSZLWr1+vnDlzauzYsZnxkWQaY4ymTp2qp59+Wr6+vsqTJ48aN26c7Gpp6fns2D/OwdfXV5IUGRmpmTNnqmLFiipUqJAGDRqkEydOWJwu/VhDILGe4f5+/vlnDR48WE888YSqVKmiGTNm6MKFC1bHcgqsnXBWrOdA6t25zXvt2rVVsWJFbvPuJIYPH64lS5YoLCxM5cuXtzpOhrly5YoGDhyod999V88995zVcQAAAAAAAAAAcF8mlZYtW2bS8LRUO336tJFkZs2alfTYkCFDjCSzefNmEx0dbSIjI02NGjVMQECAuX37dtK4rl27moCAAPPTTz+ZW7dumWPHjpnKlSubHDlymD/++CNpXJs2bUxgYGCy7U6aNMlIMhcvXkx67K233jLFixdPNu7bb781OXLkMKNGjXL0W78vSWbZsmUZvp1hw4YZHx8f88UXX5irV6+aw4cPm4oVK5q8efOa8+fPJ41Lz2fnjvvHGGOaNWtmmjVrlmnbS6vRo0cbX19fI+meHy8vLyPJlCxZ0gwfPtz8+uuvSc9zlfd3B2uI42XW+u8orGfWcqZ6qVWr1n3XPJvNZjw9PY2Hh4epVauW+eyzz8y1a9eMMc6VPzOxdjq3zDofdDas5+7D1c4nXdWFCxdMvXr1jLe3t5k6dapJTEy0OhKMMZ9++qmRZObMmWN1lAzXrVs3ExgYaK5cuWJ1FAAAAAAAAAAA3FmIU17582GqV6+unDlzKl++fGrZsqVu3rypP/74I9kYLy+vpKsDlSlTRnPmzNH169e1ePFih2Ro0KCBrl27pqFDhzrk9ZxBbGyspk6dqqZNm6pt27bKlSuXypUrp3nz5ikqKkqffPKJw7bF/nFO8fHxkqSIiAiNGzdOxYsXT7oy3p9//mlxOsdhDXF/rGewhzFGCQkJSkxM1LZt29ShQwc9+uijatCggcLDw62O53RYO2EF1nMgdTZt2qTy5cvrxIkT2r59u/r06cNt3p3Av/71L3Xr1k2DBw9W9+7drY6ToX744QctWLBAU6ZMUe7cua2OAwAAAAAAAACAW/OyOkB6+fj4SJLi4uJSHFepUiX5+/snuz0kkjt27Jhu3LihSpUqJXu8cuXK8vHxSXbbS0dzl/2zcuVKp/9y1d/f/6FjjDFJc2rfvn3au3evPDw89Pjjj+s///mPChQokNExMw1riHtiPXMezrAm5smT56FjEhISJEmJiYlau3at1q5dK0kaNGiQRo4cKV9f3wzN6GpYO5FZWM8B+8THx2vMmDEaPXq0GjdurIULF9p1/EPG++mnn9SkSRM1btxYo0ePtjpOhkpMTFT37t314osvqnXr1lbHAQAAAAAAAADA7bl882dq+Pr66uLFi1bHcFpXr16VJGXPnv2e3+XOnVvXr1/P0O27w/6pXLmy3nvvPatjpGjlypUKCwt76DibzSYPDw8ZY1SrVi1du3ZNBQsWdKvGz9RyhxrNKljPnEdISIjVEfTRRx/pypUrDx3n6empxMRE+fr66vnnn9fOnTs1evRoeXt7Z0JK98V8QHqwngMP98cff6h169b64YcfNHXqVAUHB1sdCf/v/Pnzql+/vsqWLavPPvtMHh4uefMVu82ZM0eHDh3SgQMHnOIfAAEAAAAAAAAA4O6yTPNnXFycrl69qkKFClkdxWnduSXb/b5Ez+jPzl32z+OPP67mzZtbHSNFJ06cSPH33t7eiouLU4kSJfTOO++oXbt2KlCggNO/r4zmLjWaVbCeOQ9nWDvmzp37wN95enpK+uuKxy+99JLat2+vpk2bau3atdq5cyeNn+nEfEB6sZ4DKfvmm2/UsWNHFShQQHv37lW5cuWsjoT/Fxsbq8aNG8vLy0tff/21/Pz8rI6Uoc6fP6+hQ4dqwIABKlOmjNVxAAAAAAAAAADIErJM8+fWrVtljFHVqlWTHvPy8nro7UqzkmeeeUbZs2fX/v37kz2+Z88e3b59W88//3zSY47+7Ng/1vLx8dHt27f11FNPqU2bNmrTpo1KlChhdSynQo26FtYzpMRms8nLy0vx8fF6/vnn1bp1a7Vu3Vr58uWzOprbYT4gvVjPgfu7deuWBg4cqJkzZ+rtt9/WvHnz5O/vb3Us/L/ExES1bt1aJ0+e1O7du7PEOUavXr2UN29eDRkyxOooAAAAAAAAAABkGW57z7HExERduXJF8fHxOnz4sN577z0VKVJE7du3Txrz1FNP6fLly1qxYoXi4uJ08eJF/f777/e81iOPPKJz587p3//+t65fv664uDitW7dOOXPm1NixYzPxXWUsPz8/9evXT19//bW+/PJLXbt2TUeOHFH37t1VoEABde3aNWlsej47if1jtfj4+KSr2T3++OPq16+fDh8+rIiICI0YMYLGT1Gjro71DPfj5fXXv3mpUKGCJk6cqDNnzmjPnj0KDg7OEk0ZmYH5AEdjPQfu9fPPP6tKlSr67LPPtHTpUn3++ec0fjqZPn36aP369Vq1alWW+H+rdevWKSwsTDNmzFC2bNmsjgMAAAAAAAAAQJbhlM2fs2fPVuXKlSVJAwcOVKNGjTRnzhxNmzZNkvTss8/q119/1YIFC9SvXz9JUr169RQREZH0Grdu3VK5cuWULVs21ahRQyVLltSWLVvk6+ubNObdd99VrVq11KpVK5UqVUqjR49O+qKiWrVqOn36tCSpe/fuyp8/v8qUKaP69evr8uXLmfI5WGH48OEaN26cRo0apbx586pmzZp68skntXXrVgUEBCSNS+9nx/6xVu7cudW1a1ft3LlTZ86c0bhx49zqFpGsIZBYz/Bfnp6eKl68uIYNG6aIiAj9+OOPeu+99/T4449bHc2psHbCWbGeA//1+eefq1KlSvLz89OPP/6ooKAgqyPhLtOmTdOsWbO0aNEiVa9e3eo4GS4mJkY9evRQ69atVb9+favjAAAAAAAAAACQpdiMMSY1TwgJCVFQUJBS+bRM1a1bN4WGhurSpUtWR3EYm82mZcuWqUWLFlZHSTd33D+S1Lx5c0lSaGioxUlSduHCBeXNm1eenp6pep6rvD9HcNcaTS9XWP8zG7XyYM5UL+fOnUt1o6cz5XcVzIeM507ng86G+s0cWel80tGuXbumrl27atmyZerVq5cmT56cdCV/OI9vv/1WjRs31kcffaQBAwZYHSdTDBgwQAsWLNBPP/3EP6wBAAAAAAAAACBzhXpZnSCjJCQkWB0BKWD/WCcwMNDqCC6BGoW9qBXnRyNC5mE+wJVRv3BWu3btUuvWrRUXF6fNmzerVq1aVkfCfezdu1dBQUHq3Llzlmn8PHLkiGbMmKHZs2dzvgUAAAAAAAAAgAWc8rbvAAAAAABkZfHx8RoxYoRq1qypcuXK6eDBgzR+OqlTp06pYcOGevnllzVr1iyr42SKxMREde3aVRUrVlSnTp2sjgMAAAAAAAAAQJbkds2fgwcP1uLFixUdHa2iRYsqLCzM6kj4H+wfODtqFPaiVoD/Yj7AlVG/cEa///67atWqpQkTJmjy5MlatWqV8uXLZ3Us3EdUVJTq16+vwoULa9myZfLyctsbrCQzd+5c7du3T/Pnz5eHh9v9aQkAAAAAAAAAAJfgdt9KjBs3TuPGjbM6Bh6A/QNnR43CXtQK8F/MB7gy6hfOJjQ0VF26dFHBggW1Z88ePfvss1ZHwgPExsbqzTffVHx8vNasWaPs2bNbHSlTnD9/Xh9++KEGDBig8uXLWx0HAAAAAAAAAIAsi8szAAAAAABgsejoaLVt21ZBQUFq166dfvjhBxo/nVhCQoJat26tiIgIrV27VoGBgVZHyjTBwcHKlSuXhgwZYnUUAAAAAAAAAACyNLe78icAAAAAAK5k9+7datu2rW7evKlvv/1W9evXtzoSHqJ3797asGGDNm3apFKlSlkdJ9OsX79eISEh+vbbbxUQEGB1HAAAAAAAAAAAsjSu/AkAAAAAgAXi4+M1YsQI1ahRQ88++6yOHj1K46cLGDFihObPn6+vvvpK1atXtzpOpomJiVGPHj3UsmVLNWjQwOo4AAAAAAAAAABkeVz5EwAAAACATPbbb7+pbdu2OnDggKZMmaLg4GCrI8EOixYt0siRIzV79mw1btzY6jiZauTIkYqKitKUKVOsjgIAAAAAAAAAAJSO5s/mzZs7MgfsMG3aNIWGhlodAw8QHh6uqlWrWh0jQ4WHhzP3s7AzZ85IYv2Hfe7Ui6uj3uFsOB+EK8sK58v2+vzzz9WjRw+VLl1aBw4cyFK3DXdla9euVbdu3TRs2DD16NHD6jiZ6ujRo5o2bZpmzpypxx9/3Oo4AAAAAAAAAABA3PbdZTRr1kyFChVK9lh4eLjCw8MtSgQgqylUqJCaNWt2z+NhYWFu0+gHAM6M80HA9UVFRalp06bq0KGDevbsqV27dtH46SL279+voKAgtWzZUiNGjLA6TqZKTExU165d9dxzz6lLly5WxwEAAAAAAAAAAP8vzVf+5IpD1rtzNTL2hXPICleHq1q1KvWGe9hsNvXp00ctWrSwOgqcSEhIiIKCgqyOkW6seXB2nA/ClWSF8+WUrFmzRp06dZK3t7c2b96sl19+2epIsNOvv/6qN954QzVq1NDixYtls9msjpSp5s+fr71792rfvn3y8ODfEAMAAAAAAAAA4Cz4qz0AAAAAABkkNjZWwcHBatiwoWrUqKGDBw/S+OlCoqKi9Prrr6tQoUIKCQmRl1ea/w2tSzp//ryGDBmifv36qUKFClbHAQAAAAAAAAAA/yNrfWsBAAAAAEAmCQ8PV7t27XTx4kV98cUXatOmjdWRkAqxsbF68803FRcXpzVr1ih79uxWR8p0wcHByp07t4YNG2Z1FAAAAAAAAAAAcBeu/AkAAAAAgAPFxcVpxIgRevHFF1W0aFEdPXqUxk8Xk5CQoNatWysiIkLr1q1TYGCg1ZEy3Zo1axQSEqK5c+fK39/f6jgAAAAAAAAAAOAuXPkTAAAAAAAHOXbsmNq1a6eff/5ZU6ZMUe/evWWz2ayOhVQKDg7Whg0btGnTJpUqVcrqOJnu2rVr6tatm9q1a6e6detaHQcAAAAAAAAAANwHV/4EAAAAACCdjDGaMWOGnn/+eXl7e+vgwYMKDg6m8dMFDR8+XPPmzdOyZctUvXp1q+NY4v3339etW7c0efJkq6MAAAAAAAAAAIAHcMrmz27duslmsyX9tG3b9p4xmzZt0gcffKDExEQ1adJERYoUkZ+fnwoWLKhGjRrp8OHDad5+YmKipk2bdt8veVatWqUJEyYoISEh2eMrVqxIljlv3rxp3r4zYV/AXTlb3cI5UBdAypgjcBUZUatjxoxJdo555+eZZ55JGkOtZl2///67XnnlFfXv31+DBg3Szp07VbJkSatjIQ3mzp2r0aNHa968eWrYsKHVcSyxbds2ffLJJ5o9e7by5ctndRwAAAAAAAAAAPAATtn8KUmPPPKI1q1bpxMnTmjRokXJfjd8+HDNnDlTgwcPVmJiorZv366vvvpKly9f1o4dOxQbG6uXXnpJ586dS/V2IyIi9NJLL6lv376KiYm55/dvvvmm/Pz8VLt2bV29ejXp8UaNGunMmTPatm2b6tevn/o37MTYF3A3zli3sB51AaSMOQJXkZG1+jDUatYUGhqq5557TpGRkdqzZ49GjBghT09Pq2MhDZYuXaqePXvqo48+UqdOnayOY4k///xT3bp10+uvv66goCCr4wAAAAAAAAAAgBQ4bfNntmzZVK9ePZUsWVK+vr5Jj48fP15Lly5VSEiIcuTIIUmqVq2aXnzxRfn7+6to0aIaO3asoqOj9Y9//CNV2zx06JAGDRqk7t27q0KFCg8cFxwcrPLly6t+/fqKj4+XJNlsNhUsWFA1atRQiRIlUv+GnRj7Au7EWesW1qIugJQxR+AqMrJWJemLL76QMSbZz9GjR5ONoVazjgsXLqhx48Zq2bKlOnbsqB9++EEVK1a0OhalXgiDAAAgAElEQVTS6Pvvv1f79u317rvvauDAgVbHscyIESN09uxZzZs3z+ooAAAAAAAAAADgIZy2+fN+Tp48qaFDh2rkyJHy8/OTJHl5eWn16tXJxhUrVkySdOrUqVS9fvny5bV8+XK1adMmWZPj/YwYMUIHDx7U9OnTU7UNd8G+gCuibnE/1AWQMuYIXEVG12pqUKvub+nSpXrmmWd06NAhff/995o0aVJS3cH17Nu3T40aNVKzZs00Y8YMq+NY5vDhw5oyZYrGjx+vwoULWx0HAAAAAAAAAAA8hEs1f86cOVPGGL355pspjouNjZUk5cyZM8Oy5MmTRzVr1tT06dNljMmw7Tgr9gVcEXWL+6EugJQxR+AqqFVkhsjISDVr1kytW7dW06ZNdfjwYdWsWdPqWEiHiIgIvfHGG6pZs6YWL14sDw+X+jOJw8THx+udd95RpUqV1LVrV6vjAAAAAAAAAAAAO7jUtxpr1qxRqVKl5O/vn+K4vXv3SpJefPHFDM3z3HPP6ezZszp06FCGbscZsS/giqhb3A91AaSMOQJXkRm1+sEHHyhPnjzy8fFR0aJF1bhxY+3bt+++Y6lV9xMaGqqyZctq//792rhxo+bPn68cOXJYHQvpcPbsWdWpU0dFixbVsmXL5O3tbXUky0ydOlVHjx7VwoULs2wDLAAAAAAAAAAArsZl/qJ/8+ZN/fbbbypevPgDx1y4cEFLly5VcHCwqlWr9tCr/qRXiRIlJElHjhzJ0O04G/YFXBF1i/uhLoCUMUfgKjKjVv/+979r1apVOn36tG7cuKElS5bojz/+UM2aNXXs2LF7xlOr7uPO1T6DgoLUtGlTHTlyRK+++qrVsZBOly5d0muvvabs2bNr7dq1CggIsDqSZX777TeNGjVKw4YNU5kyZayOAwAAAAAAAAAA7ORldQB7RUZGyhiT4pV8qlWrpps3b6pFixYaM2ZMhl+1406WCxcuZOh2nA37Aq6IusX9UBdAypgjcBWZUauFCxdW4cKFk/67atWqWrx4sSpUqKCPP/5Yc+bMSTaeWnUPoaGh6tGjh/z9/bVx40aaPt1ETEyMGjVqpOvXr2vnzp165JFHrI5kGWOMunTpouLFi2vAgAFWxwEAAAAAAAAAAKngMs2ft27dkiT5+vo+cEz+/Pm1aNEilS1bNlMyZcuWLVm2rIJ9AVdE3eJ+qAsgZcwRuAqrarVcuXLy9PTUL7/8cs/vqFXXFhkZqR49emj58uXq3LmzJk+ezC3e3URcXJyaNWumEydOaPv27cmaurOiRYsWacuWLQoPD8/St70HAAAAAAAAAMAVuUzz550vTxMSEh44Jl++fMqdO3dmRdLt27cl/TdbVsG+gCuibnE/1AWQMuYIXIVVtZqYmKjExMT7Np1Sq66Lq326L2OMOnfurB07dmjLli0qXbq01ZEsdf78eb3//vvq06ePKlWqZHUcAAAAAAAAAACQSi7T/Jk/f37ZbDZFR0c/cMzq1aszMZGSsgQGBmbqdq3GvoArom5xP9QFkDLmCFxFZtRq3bp1tWHDhmSP7du3T8YYVatW7Z7x1Krr4Wqf7q9fv35asmSJVq9ereeff97qOJbr0aOHcuXKpREjRlgdBQAAAAAAAAAApIGH1QHs5e/vr2LFiunMmTP3/f3JkycVGBiooKCge37XsmVLBQYG6scff3RopjtZypUr59DXdXbsC7gi6hb3Q10AKWOOwFVkRq2ePXtWS5cu1dWrVxUXF6fdu3erU6dOKlKkiLp3737PeGrVtSxZskTPPPOM9u7dqw0bNmj+/Pk0frqZUaNGacaMGfryyy/12muvWR3HcsuXL9c333yjTz75RAEBAVbHAQAAAAAAAAAAaeAyzZ+S1KBBAx07dkyxsbH3/M4Y88Dn3b59W5GRkVq5cmWKrx8eHq4XX3xRjz/+uPbs2aNDhw6pQIEC+tvf/qZt27bdM37fvn0qWLCgnn322dS/GRfHvoArom5xP9QFkDLmCFxFRtdqvXr19OGHH6pQoULy9/dXixYt9Le//U3h4eF69NFH7xlPrbqG06dPq2HDhmrTpo2aNm2qI0eOqE6dOlbHgoPNnz9fw4cP17Rp09S8eXOr41guOjpawcHB6tChA/UOAAAAAAAAAIALc5nbvktSr169NGfOHC1fvlxt27ZN9rsSJUrowoUL931eWFiYXn75ZT3xxBMpvn7VqlW1Y8cOu7JcunRJmzdv1pgxY2Sz2ex7A26EfQFXRN3ifqgLIGXMEbiKjK7VyZMna/LkyXZloVadnzFGCxYs0IABA5QvXz599913ql27ttWxkAFCQ0PVo0cPjRo1Sr1797Y6jlPo27evEhIS7F7TAAAAAAAAAACAc3LaK3/GxsZqw4YNioiI0O3btyVJTz31lEaNGqVRo0bpxo0bdr1OQkKCVqxYoevXr6tly5YOyzdixAhVqFAh6csjY4zOnTunHTt26OTJkw7bjjNgX8BdOHPdwjrUBZAy5ghcBbUKe506dUqvvvqqevToofbt2+vQoUM0frqpdevWqW3bturZs6eGDh1qdRynsHnzZi1evFizZs1Snjx5rI4DAAAAAAAAAADSwWmbPy9fvqx69eqpZMmSeuedd5Ie/+CDD9S8eXO1bNlS0dHRD32drVu3avny5Vq3bp38/f0dkm3q1Kk6ePCg1q5dK29vb0nSypUrVbBgQdWoUUNr1qxxyHacBfsC7sRZ6xbWoi6AlDFH4CqoVaQkPj5eM2bM0LPPPquoqCjt3r1bM2bMUEBAgNXRkAF27dqVtB5MnTrV6jhO4caNG+rcubMaN26sZs2aWR0HAAAAAAAAAACkk80YY1LzhJCQEAUFBSmVT3O4jRs36vvvv9f48eMzdbsrV67UTz/9pPfff1+enp6Zuu27NW/eXNJft7GzEvviL86yPzKKu70/6tZxbDabli1bphYtWlgdJd2oC8dxlvOFtHL1/BmFOeJ83O347CjUqnOysl4PHTqkTp066ejRoxo4cKAGDx4sHx+fTM+BzHHw4EHVqlVLtWrVUkhIiLy8vKyO5BR69uyppUuX6ujRo3rsscesjgMAAAAAAAAAANIn1GWbP8GX/c7G3feHu78/pJ07NX/CcVz9fMHV8yPr4PgMV2JFvcbGxmrChAkaN26cqlSpogULFqh06dKZtn1kvl9++UUvvfSSnn32Wa1evVq+vr5WR3IKW7du1SuvvKIvv/xSrVu3tjoOAAAAAAAAAABIv1AufwEAAAAAcDvbt29X586ddf78eU2aNEm9evWSh4eH1bGQgf744w/VqVNHxYoV0zfffEPj5/+LiYlR586d9cYbb9D4CQAAAAAAAACAG+GbLwAAAACA27h69aq6dOmimjVrqnTp0vrpp58UHBxM46ebO3funGrVqqU8efJozZo1CggIsDqS0xg0aJCioqI0d+5cq6MAAAAAAAAAAAAH4sqfAAAAAAC3sGTJEvXt21fGGC1btizpVvNwb1FRUapTp468vLy0YcMG5cmTx+pITmPXrl36+OOP9dlnn6lgwYJWxwEAAAAAAAAAAA7EpU8AAAAAAC7t1KlTqlevntq0aaM6dero2LFjNH5mEdeuXdPrr7+uGzdu6LvvvlNgYKDVkZxGTEyM2rdvr/r166tt27ZWxwEAAAAAAAAAAA7GlT8BAAAAAC4pLi5Oc+bM0ZAhQ1S8eHHt2LFD1atXtzoWMklsbKzefPNNnT59Wtu2bVORIkWsjuRUBg8erMjISH3//fdWRwEAAAAAAAAAABkgzc2fNpvNkTmQDuwL59GsWTOrI2SosLAw6g33FRQUpKCgIKtjAA7HmgdXQa3CVTjyfHn79u3q1q2b/v3vf2vAgAEaPHiwfHx8HPb6cG5xcXFq3ry5jh07pq1bt6pkyZJWR3Iqu3fv1uzZs/Xpp5+qUKFCVscBAAAAAAAAAAAZwGaMMal5wpkzZ7Rr166MygO4tMKFC6tatWpWx8gQu3fv1unTp62OAcDFtGjRwuoIacL5DgBkDEecL1+5ckWDBg3SggULVL9+fc2ePVtPPvmkYwLCJSQkJKhNmzZat26dNm/erEqVKlkdyanExMSoQoUKKlmypL799lur4wAAAAAAAAAAgIwRmurmTwAAAAAAMpsxRl988YX69+8vLy8vjR8/Xu3atbM6FjKZMUZdu3bVl19+qXXr1qlmzZpWR3I6ffv21aeffqqjR49y1U8AAAAAAAAAANxXqIfVCQAAAAAASElERITq1KmjDh06qEmTJjp+/DiNn1nU+++/r3/84x8KDQ2l8fM+du/erZkzZ2r69Ok0fgIAAAAAAAAA4OZo/gQAAAAAOKXY2FgNGTJEzzzzjKKjo7V3717Nnz9fOXPmtDoaLDB06FBNmzZN//znP9WgQQOr4zidP//8U506dVLdunXVvn17q+MAAAAAAAAAAIAM5mV1AAAAAAAA7rZ69WoFBwcrMjJSo0aNUv/+/eXp6Wl1LFhk7NixGjdunBYuXKjmzZtbHccpDRkyRGfPntX69eutjgIAAAAAAAAAADIBV/4EAAAAADiNiIgI1a9fX40aNVK1atX0yy+/aODAgTR+ZmHTp0/X0KFDNWvWLHXo0MHqOE4pPDxc06dP19SpU1W4cGGr4wAAAAAAAAAAgExgM8YYq0MAAAAAALK22NhYTZgwQRMmTNATTzyhWbNmqU6dOlbHgsVmzZql3r17a+LEiRowYIDVcZzSn3/+qYoVK+rxxx/Xxo0bZbPZrI4EAAAAAAAAAAAyXii3fQcAAAAAWGr16tXq3bu3Ll68qIEDB2rw4MHy8fGxOhYs9umnnyo4OFgfffQRjZ8pGDp0qM6cOaN169bR+AkAAAAAAAAAQBbCbd8BAAAAAJb431u816hRQydPntSIESNo/IQ+++wzde7cWaNGjdKgQYOsjuO09uzZo6lTp2rKlCkqUqSI1XEAAAAAAAAAAEAm4rbvAAAAAIBMFRMTo4kTJ2r8+PEqXbq0Zs+erRdffNHqWHASYWFhatWqld577z1NmjTJ6jhO69atW6pYsaIKFy6s9evXc9VPAAAAAAAAAACyFm77DgAAAADIPKtXr1avXr0UHR2tCRMmqGfPnvL09LQ6FpzE119/rVatWqlnz540fj7E4MGDde7cORo/AQAAAAAAAADIorjtOwAAAAAgw/3000+qXbu2GjdurNq1a+uXX35RcHAwjZ9Isn79erVu3Vrdu3fXtGnTrI7j1Hbs2KEZM2Zo1qxZ3O4dAAAAAAAAAIAsiuZPAAAAAECGiYqKUo8ePVS+fHlFR0dr165dWrRokfLly2d1NDiR7777Tk2aNFGbNm00Y8YMq+M4tRs3bqh9+/Zq2LCh3n77bavjAAAAAAAAAAAAi3DbdwAAAACAw8XFxWnx4sUaMmSIvL299fHHH6tjx45c6RP32Lx5sxo1aqSgoCAtWLCAW5g/RHBwsK5du6b58+dbHQUAAAAAAAAAAFiI5k8AAAAAgENt2rRJwcHB+u2339S7d28NHjxYOXPmtDoWnNCuXbvUuHFjNWjQQAsXLpSHBzcoScnq1av16aefKiwsTIGBgVbHAQAAAAAAAAAAFuJbFQAAAACAQ+zdu1e1atXSa6+9prJly+rYsWMaP348jZ+4r/DwcNWrV0+vvfaalixZIi8v/n1qSqKiotSlSxd16NBBb731ltVxAAAAAAAAAACAxWj+BAAAAACky/Hjx9W0aVNVqVJFxhjt3r1bISEhKlq0qNXR4KQOHjyoBg0a6G9/+5u++uorGj/t8O6778rLy0tTpkyxOgoAAAAAAAAAAHACNH8CAAAAANLk7Nmz6tq1q8qVK6cTJ04oJCREW7duVZUqVayOBid24MAB1a5dWy+88IJWrFghX19fqyM5vS+++EJhYWFauHCh8uTJY3UcAAAAAAAAAADgBLi0BgAAAAAgVSIjIzVx4kTNnTtX+fLl06JFi9S2bVt5ePDvC5GyH3/8UXXq1FGlSpX09ddf0/hph7Nnzyo4OFi9e/dW3bp1rY4DAAAAAAAAAACchM0YY6wOAQAAAABwfneaPufNm6ccOXJo4MCB6t69Ow18sMvBgwf16quv6vnnn9eKFSuULVs2qyM5PWOM6tevr3//+9/68ccf+cwAAAAAAAAAAMAdoVz5EwAAAACQoqioKM2ePVvTpk2Tr6+vhg4dql69esnf39/qaHARBw4cUJ06dWj8TKWPP/5YmzZt0o4dO/jMAAAAAAAAAABAMjR/AgAAAADu6+6mz8GDB9P0iVSj8TNtTp06pQ8++ECDBw9WlSpVrI4DAAAAAAAAAACcDLd9BwAAAAAkc3fTZ79+/Wj6RJrcafysVKmSVqxYIT8/P6sjuYT4+HjVqFFDf/75p8LDw+Xj42N1JAAAAAAAAAAA4Fy47TsAAAAA4C9c6ROOdODAAb366quqXLkyjZ+pNGHCBB04cED79u2j8RMAAAAAAAAAANyXw6782bx5c0e8DOAy+vbtq2rVqlkdI9NMnTpVu3fvtjoGABcTGhpqdYQ02b17t6ZOnWp1DADIVMYYrV+/XgkJCSpVqpSKFSsmT09Ph26jWrVq6tu3r0NfE87pxx9/VJ06dWj8TIODBw+qSpUqGjdunPr162d1HAAAAAAAAAAA4JxCPRz1SmFhYTpz5oyjXg5wamFhYTp9+rTVMTLV7t27FR4ebnUMAC7izJkzCgsLszpGmp0+fdql8wNAWthsNlWtWlWvv/66SpQo4fDGz/DwcP4xURZxp/HzhRdeoPEzlf7880/9/e9/V+XKlfXee+9ZHQcAAAAAAAAAADgxh972vU+fPmrRooUjXxJwSjabzeoIlqhatarLXsUPQOYKCQlRUFCQ1THSjTUPAByHu0VkDf/b+PnNN9/Q+JlKQ4cO1alTp3Tw4EGHN2ADAAAAAAAAAAD34tDmTwAAAAAAkDXR+Jk+O3bs0NSpUzV37lw99dRTVscBAAAAAAAAAABOzmG3fQcAAAAAAFnTDz/8QONnOly7dk3t2rVTvXr11LlzZ6vjAAAAAAAAAAAAF0DzJwAAAAAASLM7jZ9VqlSh8TONevbsqRs3bmjhwoVWRwEAAAAAAAAAAC6C274DAAAAAIA02bNnj+rWrasaNWooLCxMvr6+VkdyOcuXL9eXX36plStX6rHHHrM6DgAAAAAAAAAAcBFc+RMAAAAAAKTa9u3b9dprr+mll17S8uXLafxMgzNnzqhLly5699131bBhQ6vjAAAAAAAAAAAAF2Jp8+ehQ4fUsmVLFS1aVL6+vsqbN6/Kly+vMWPGZNg2165dq1y5cmn16tWSpMmTJyt//vyy2WyaN2/eA8dlhE6dOilHjhyy2Ww6ePBgqp4bHh6up59+Wh4eHrLZbAoMDMzQzy0tli9frmLFislms8lms+mxxx5T27ZtrY4FF5QZ89EeD1ovHOmjjz5Srly50rQuZJaXX345aV7f/ZM9e/Y0vWZGHA8yum6sXuNcoVYAV/WgczRnOR5JGbMWS9KJEyfUq1cvlS1bVjly5JCXl5dy5cqlkiVLqkGDBtq9e7cD34Vzu3udv9/Pk08+aXXMZFyhduE+/vWvf6l+/fqqWbOmQkND5ePjY3Ukl5OYmKh27dopMDBQEydOtDoOAAAAAAAAAABwMZY1fx45ckTVq1fXY489pi1btig6Olq7du1SvXr1tHXr1gzbrjEm2X/3799fu3bteui4jLBw4UItWLAgTc+tWrWqfv75Z7322muS/vqi/sMPP3RkvHR766239Ouvv6p48eLKlSuXzp8/ry+//NLqWHBBmTEf7fGg9cKRPvjgA82fPz9Dt5GRXnzxxVQ/J6OOBxldN1avca5eK4Aze9A5mrMcjx4mLWuxJC1atEjlypXT4cOHNXXqVJ0+fVo3b97UgQMHNHr0aF29elVHjhxxcFrndfc6b4yRMUbx8fGKiYnRhQsX5O/vb3XMZFy9duE61q1bp9dff11vvPGGvv76a674mUYTJkzQrl279NVXXzndegIAAAAAAAAAAJyfl1Ubnjx5snLnzq3p06cnPVayZEmNHj1ab731VrKxsbGxql27tkOarho0aKDo6GiHjcN/OXI/wf2lpl6Yj87Fz89P165dU44cOZI93q1bN7Vo0SLVr5dRxwPqBq6G46jzc6Z1xdFrcXh4uLp27aqaNWtqw4YN8vL67/8mFCtWTMWKFVPu3LkVERFh92u6a017enoqW7ZsypYtm0qWLGl1HLs4U+3C9a1evVrNmzfX22+/rfnz58vDw9IbirisH3/8USNGjNDYsWNVoUIFq+MAAAAAAAAAAAAXZNm3NJcuXVJ0dLQuX76c7HEfH597bke4aNEiRUZGZma8TGOz2ayO4DDuvJ/geFbWizFGoaGh+uSTTyzZvqtbv379Pc1Gp0+f1tGjR/XKK6+k+vVc5XhA3SCjOaq+qVXHyIxztPTsK0evxWPGjFFCQoI++uijZI2f/6tu3brq2bOn3a+ZFWp6xYoVVke4h7PXLlzb0qVL1bRpU3Xo0IHGz3SIiYlR69atVa1aNfXt29fqOAAAAAAAAAAAwEVZ9k1N5cqVdfPmTb3yyivauXPnA8e999576tevn06dOiWbzaannnpKkpSQkKBhw4apSJEiypYtm5599lktW7ZMkjRx4kT5+/srR44cioyMVL9+/VSwYEEtWrRIRYoUkc1m0+zZsx+4zR07dtwz7uTJk7LZbPf9+e677x6aSfrrS9JJkyapVKlS8vX1Va5cuTRgwIB7tr9+/XrlzJlTY8eOTfXnOmfOHAUEBMjf318rV67U66+/rpw5c6pQoUJasmRJ0riZM2fKz89P+fPnV7du3VSgQAH5+fmpevXq2rNnT9K43r17y8fHR4899ljSYz169FBAQIBsNpuioqJS3E+ptX37dpUpU0a5cuWSn5+fypUrpw0bNkiSOnXqlPSZFy9eXAcOHJAkdejQQf7+/sqVK5dWrVolKW31ceLEiTRlxoP961//0gsvvCB/f3/lzJlT5cqV07Vr1+5bL6mZt/bWufRXLYwbN06lSpVStmzZlDdvXhUtWlTjxo1L05XR7scYo6lTp+rpp5+Wr6+v8uTJo8aNG+v48eNpGne3Cxcu6Mknn5SXl5fq1asnyf65ae9cT6/x48crODg42WP2rmXpOR64Wt1QK+7viy++UKVKleTn56eAgAA9+eSTGj16tKSUj3FpOd+583t7atWemnrQfKpRo4bdx197pfS+UjNXH/aZp2bOPewc7X7nh86wrvyvtK7Ft2/f1ubNm/Xoo4/qhRdesHt71HRy1C7c3cKFC9WmTRv16dNHc+fOpfEzHfr06aMLFy7o888/53MEAAAAAAAAAABpZxxEklm2bJnd42NiYkylSpWMJCPJlClTxkyYMMFcunTpnrFvvfWWKV68eLLH+vfvb3x9fU1YWJi5cuWKGTx4sPHw8DD79u0zxhgzZMgQI8kEBwebWbNmmaZNm5qff/7ZnD592kgys2bNSnqtiIgII8nMnTs36bG7x0VERJhBgwaZmzdvGmOM+c9//mPy5MljqlevbhISEuzOZLPZzJQpU8yVK1dMTEyM+fjjj40kc+DAgaRtf/vttyZHjhxm1KhRD/0c69ataySZK1euJD12571v3rzZREdHm8jISFOjRg0TEBBgbt++nTSua9euJiAgwPz000/m1q1b5tixY6Zy5comR44c5o8//kga16ZNGxMYGJhsu5MmTTKSzMWLF1PcT8YYU7x4cZMrV66HvhdjjAkNDTUjRowwly9fNpcuXTJVq1Y1jz76aLJteHp6mrNnzyZ7XuvWrc2qVauS/jut9WGv1Na7O2jWrJlp1qyZ3eNv3LhhcubMaSZMmGBiY2PN+fPnTdOmTZNq5n71kpp5a2+djx071nh6epqVK1eamJgY88MPP5jAwEDz8ssvp+lzuN96MWzYMOPj42O++OILc/XqVXP48GFTsWJFkzdvXnP+/PlUj1uyZEmydeH27dvmrbfeMitXrkyWxd65ae9cT6szZ86YMmXKJK2Fd9i7lqX3eGB13aRmjctKtbJs2TLjwNOMTJeW/NOmTTOSzEcffWQuXbpkLl++bObPn2/atGljjLHvGJfa8x17a9XemnrQfLL3+Gsve4/TD5urD/vMU/O+7TlHc6bj0d3Ssxb/8ssvRpKpWrVqqraZVWr6fut8cHCwOXLkyD2fCbWbstSeT8J5zJ0713h4eJiBAwdaHcXlrVixwkgyS5cutToKAAAAAAAAAABwbSGWNX8a81eTyowZM0zp0qWTmn7y589vtm7dmmzc3V8cx8bGGn9/f9OyZcukx2JiYoyvr6959913jTH//TIzNjY22Wultfnzbk2aNDF+fn7m+PHjdmWKiYkx/v7+pk6dOsle5+7GndRKqfnzf9/7nS+BT548mfRY165d7/kie9++fUaSGTlyZNJjmdn8ebdx48YZSSYyMtIYY8ymTZuMJDNmzJikMdHR0aZEiRImPj7eGJO++rAXzZ8Pd/ToUSPJfPvtt/f9fUpNfPbMW3vrvHLlyuaFF15I9npdunQxHh4e5s8//7T7/dxx93oRExNjsmfPnqzejDFm7969RlJSs42944xJvi7ExcWZVq1amXXr1t2TJTUNffbM9bTq2bNnsvUzLdJ6PDDG+rqxd43LarWS1Zo/b9++bXLnzm1q1aqV7PH4+Hgzffr0+z7n7mNcWs537KnV1NTUg+aTPcdfe6X1OH33XH3YZ56aOWfvOZozHY/ulp61eP/+/UaSefXVV9OVwV1runjx4knHpv/9San5k9q9P5o/XdPEiRPvmVtImwsXLpjAwEDTsWNHq6MAAAAAAAAAAADXF2Lp/cW8vb3Vu3dv/fzzzwoPD1fjxo0VGRmp5s2b68qVKw983okTJxQTE6Nnnnkm6bFs2bLpsccee957Y5YAACAASURBVOgtcR0hJCRE33zzjUaOHKlSpUrZlenkyZOKiYlR7dq1Mzzf/fj4+EiS4uLiUhxXqVIl+fv7Z8rnaA9vb29Jf91uUpJeeeUVlSxZUp9++qmMMZKkpUuXqmXLlvL09JRkfX3gL8WKFVP+/PnVtm1bjRgxQv/+978zfJv3q/Nbt24l1codCQkJ8vb2TqqZ9Dh27Jhu3LihSpUqJXu8cuXK8vHxSbpdtr3j7s7ZunVr5c+fP+kW3o7iqLl+7tw5rVq1Su3bt0/X66T1eOAImVU3Wb1W3N3hw4d19epV1a1bN9njnp6e99yG+467j3F3s+d4Zk+tpqWm7mbP8ddeaT1O3z1XH/aZ2/u+M+IcLbOPR+ldi7Nnzy5JiomJSVcOd67pXLlyyRiT9POgeX0/1C5c2YQJEzRw4EBNnz5dQ4cOtTqOSzPGqEOHDsqePbumTZtmdRwAAAAAAAAAAOAGLG3+/F9VqlTRN998o+7du+vixYvasmXLA8fevHlTkvThhx/KZrMl/fz+++/p/tL6YS5duqRevXqpcuXK6tevn92Zzpw5I0nKly9fhuZzBF9fX128eNGSba9Zs0Yvv/yy8uXLJ19fX73//vvJfm+z2dStWzf9+uuv2rx5syTp888/V8eOHZPGWFkf+K9s2bLp+++/14svvqixY8eqWLFiatmypWJjYzM1R/369fXDDz9o5cqVio2N1f79+7Vixf+xd9/hUZX5+8fvIQlpkIQOUqQJqICo4C8grOKqdKSk0FxBpAhSRBRURJYqioB0QQQXNCahhSosCCJSZUGaUkQFRIoEQgukPb8/dsnXQAgTMsmZ8n5dV65rnXnmnHvOfJ7nHJ3Pnlmi5s2bO6Rh4cKFC5L+r3Hmr0JCQnTp0qVsjfurV155RYcPH9aMGTN04MCBHGe9mSPm+tixY9WtWzf5+fk5KFX2zge5JTfqxtNrxd1dvHhR0n8/o9u50znuZvacz+yp1bupqZvZc/61l6PO03c65va+77y6RsvN81FO1+Ly5cvLz89Phw4dytbrPLmmJ06cmKGJNTuoXbiKd955R2+99ZZmzZqVrYZnZG7ixIlas2aN5s+fr4IFC1odBwAAAAAAAAAAuAHLmj/btm2rlJSUWx5//vnnJWV956EbX3BOmDAhwx14jDHasmVL7gT+n379+unChQuaM2dOhi8775Tpxpfx169fz9V8OZWcnKwLFy6oTJkyebK/jRs3pt/15NixY2rdurVKliypbdu2KSEhQWPHjr3lNZ07d5afn58++eQTHTx4UEFBQbr33nvTn7eyPpDRgw8+qGXLlunkyZMaNGiQoqOjNW7cuDzNMGzYMD311FPq3LmzgoKC1KZNG0VERGjWrFkO2f6Nxo3MGk3+OpfsHfdXERER+ve//62QkBD94x//yHTNvFuOmOunTp3SF198oV69euUoS07OB7nFUXXz1zXOk2vFE9xzzz2SpD///DPT5+09x/2VPecze2r1bmoqM3c6/9rLUefpOx1ze993Xl2j5db5yBFrsa+vrxo1aqQ///xT33333W3HxcfH66WXXpJETecEtQtnZ4xR//79NWbMGH366ad31eiPjPbv36+3335b7777rkJDQ62OAwAAAAAAAAAA3IRlzZ/Xr1/P9O5kBw8elCTVrFnztq8tW7as/Pz8tHv37lzLl5kVK1bo888/1zvvvKMHH3ww/fHXX3/9jpmqV6+ufPny6ZtvvsmruHdlw4YNMsZk+ELK29v7jj8Xf7d27typwMBASdLevXuVnJysXr16qWLFivLz85PNZrvlNYUKFVJkZKSWLFmicePGqVu3bhmet6o+kNHJkyfT53ixYsU0ZswYPfLII7lyV8Ks7N+/Xz///LPOnj2r5ORkHTt2TNOmTVOhQoUcsv3q1aurQIEC+v777zM8vm3bNiUlJenRRx/N1ri/atiwoYoWLaqZM2dq586dGjlyZIbnczI3M5vr2TV27Fh16tRJhQsXvuttSDk7H+QWR9XNX9c4T64VT1C+fHkVLlxYa9asyfR5e89xf2XP+cyeWr2bmsrMnc6/9nLUefpOxzw7cy4vrtFy63zkqLV42LBh8vX11YABA257l+59+/bJ29tbEjV9wx9//KEuXbpk6zXULpxZWlqaunXrpunTpys6OlovvPCC1ZFc3vXr19WhQwc98sgjevPNN62OAwAAAAAAAAAA3IilP/veunVrxcTE6MKFC0pISFBcXJwGDx6s5557LkOzT+HChXXy5En9+uuvunTpkry8vNSlSxdFRUVp2rRpunjxolJTU3XixAn98ccfuZL14sWL6tmzp2rVqqXBgwdLkq5du6bvv/9eu3fvlp+fX5aZihUrprZt22rBggWaPXu2Ll68qD179mjmzJm37GvVqlUKCgrSqFGjcuW9/FVaWprOnz+vlJQU7dmzR/3791e5cuXUuXPn9DGVK1dWfHy8lixZouTkZJ09e1a//fbbLdu6+XPKqtEoOTlZp0+f1oYNG9Ibo8qVKydJWrt2ra5du6bDhw9r27Ztmb7+5Zdf1vXr17V8+XK1aNEiw3N3+iyQN06ePKmePXvqp59+UlJSknbt2qXffvstvYEsO/WSE6+88orKlSuny5cv58r2/fz89Nprr2nRokWaP3++Ll68qL179+rll19WqVKl1KNHj2yNy0zLli3VuXNnjRo1Sjt37kx/3N65Kdk317Pj9OnT+vTTT/Xqq6/edkx21rK7PR84a91ktsZ5aq14Cl9fX7311lvauHGj+vbtq99//11paWm6dOmSDhw4YNc57m6ud+yp1ZzU1M2yOv/ay1Hn6Tsdc3vfd3au0XIiN85HjlyLa9Wqpc8//1z79u1TgwYNtHLlSiUkJCg5OVm//PKLZs2apa5du8rHx0eSfddt7lzTxhglJiZq4cKFCgoKsvt1ErUL55WamqoXX3xR8+fPV0xMjNq2bWt1JLfwxhtv6LffftP8+fMz/HoIAAAAAAAAAABAjhkHkWSio6PtHr9mzRoTGRlpKlWqZHx9fU3+/PlN1apVzbBhw8y1a9cyjP3Pf/5j7r33XuPv72/q169vTp06Za5fv24GDRpkypUrZ7y9vU2xYsVM27Ztzf79+83YsWONv7+/kWTKli1r5s2bZ4wxZvLkyaZkyZJGkgkICDAtW7Y0H374oSlRooSRZAIDA02bNm0yHTdu3DgjKdO/pk2bGmNMlpmMMebSpUvmpZdeMkWKFDEFChQw9evXN0OHDjWSTJkyZcwPP/xgjDFm5cqVpmDBgmbkyJG3PX5bt241Dz74oMmXL5+RZEqWLGlGjRplpk6dagICAowkc99995mff/7ZzJw50wQFBRlJ5t577zWHDh0yxhjTo0cP4+PjY0qXLm28vb1NUFCQadWqlfn5558z7OvcuXOmYcOGxs/Pz1SoUMH06dPHvP7660aSqVy5sjl27Fimn9P06dNNpUqVbnvcbvwtWrQofV+DBg0yhQsXNiEhISY8PNxMmTLFSDKVKlVK388NDz/8sHnzzTczPT53Ux/Zkd16dwdhYWEmLCzM7vG//vqrqVevnilUqJDx8vIy99xzj3n77bdNSkqKMebWehkwYIDd8zY7df7111+bIkWKZKg5Hx8fc//995uFCxdm6xhktl4YY0xaWpr54IMPzH333Wd8fHxMoUKFTOvWrc3BgwczvN6ecQsXLjSFChUykkz58uXNmTNnzMWLF03ZsmWNJFOgQAHzr3/9yxhj/9y0d65nx4ABA0ynTp2yHGPPWmZMzs4HVtbNokWLsr3GeVKtREdHGwdeZuS5u80/ZcoUU6NGDePn52f8/PzMww8/bKZOnWqMufM5LrvXO8bYv8bZU1P2nh+zOv/aK6v3lZ25eqdjbu+cs+cazZnORzc4ci2+4dixY2bgwIGmRo0apkCBAsbLy8uEhISYhx9+2HTt2tV899136WPdvabtXeeHDBlijDHUrh2yez2JvHPt2jXTunVrExgYaNauXWt1HLexevVqY7PZzOeff251FAAAAAAAAAAA4H5ibMYYY0+T6J3YbDZFR0crIiLCEZtDHujZs6diY2N17tw5q6PclWbNmmnKlCmqUKFCnu/bE+s9PDxckhQbG2txkuyZNm2aDh8+rAkTJqQ/lpSUpMGDB2vatGk6f/68/P39LUyY+1x9rlvBU+vGkbUSExOjyMhIOegyI8+5Sn4ratXK868r89R1JbuoaefjyM/EVa8n3d3ly5fVqlUr7dy5U8uWLVP9+vWtjuQW/vzzT9WsWVP169dXTEyM1XEAAAAAAAAAAID7ifW2OgGslZqaanUEuyUnJ6f/1OiePXvk5+fHl/TI0qlTp9S3b1/t3r07w+P58+dXuXLllJycrOTkZI9otnGluW41T68basV15FWtcv7NOU9fV+xFTTsfatf9nT9/Xs2aNdPRo0e1fv161apVy+pIbsEYoxdffFH58+fXrFmzrI4DAAAAAAAAAADcVD6rAwD2GjRokA4fPqxDhw6pS5cuGjFihNWR4OT8/f3l4+Oj2bNn6/Tp00pOTtbJkyf1ySefaOjQoWrXrp1Onjwpm812x7927dpZ/XZyzU8//eTxx+Cv7KmboKAgq2MCeVar9px/WUeyxvnIPs5U0/gvzonu7dSpU3ryySd18uRJbdy4kcZPB5o8ebJWrVql+fPnKzg42Oo4AAAAAAAAAADATXHnTw/11ltvac6cOUpKSlKFChX0wQcfKCwszOpYWQoICFC1atVUunRpTZ06VQ888IDVkeDkgoODtWbNGg0fPlxVqlTRlStXVKBAAT344IN677331L17d3l7ezv9zzrnhD1zvVq1am59DLLLnrpxR654XvB0eVWr9px/WUeyxvnIPs5U0/gvTz0neoJffvlFzz77rHx8fPTtt9+qbNmyVkdyG3v27NGgQYP07rvvqn79+lbHAQAAAAAAAAAAbsxmHPQts81mU3R0tCIiIhyxOcCpeWK9h4eHS5JiY2MtTgLAFcTExCgyMtJlm9lcPT8AOCOuJ53D/v379eyzz6pUqVJatWqVihUrZnUkt3H58mXVrl1bJUuW1Lp16+Tl5WV1JAAAAAAAAAAA4L5i+dl3AAAAAAA8wPbt2/XEE0+oSpUq+vrrr2n8dLBevXopPj5eX3zxBY2fAAAAAAAAAAAg19H8CQAAAACAm1u3bp3+/ve/q169elq5cqWCgoKsjuRW5s6dq/nz52v27Nm65557rI4DAAAAAAAAAAA8AM2fAAAAAAC4scWLF6tZs2Zq1aqVFi1aJH9/f6sjuZXDhw+rb9++GjhwoFq0aGF1HAAAAAAAAAAA4CFo/gQAAAAAwE3NmDFDYWFh6tatmz777DN5e3tbHcmtXL9+XZGRkapWrZpGjhxpdRwAAAAAAAAAAOBB+NYHAAAAAAA3NHbsWA0ePFiDBg3Se++9Z3UctzRgwAAdPXpUu3btUv78+a2OAwAAAAAAAAAAPIhDmz8jIyMVGRnpyE0CcCILFiyQzWazOgYA5BnWPABwrLCwMKsjeARjjAYNGqRx48ZpwoQJ6t+/v9WR3NLy5cs1ffp0zZ8/XxUqVLA6DgAAAAAAAAAA8DAObf7s37+/6tat68hN4n8iIyM5vk7EU5ucQ0ND9eqrr1odAxbZsmWLJk6cqOjoaKujwAXcqBdXR73DmXA9CFc3YcIEqyN4hNTUVPXs2VNz587VnDlz9MILL1gdyS0dP35cnTt3Vvfu3dWhQwer4wAAAAAAAAAAAA/k0ObPunXrKiIiwpGbxP9ERkZyfJ2IpzZ/lilThhr0cBMnTqQGYDd3aP6k3uFMuB6Eq4uNjbU6gtu7du2aOnTooNWrVysuLk5Nmza1OpJbSklJUfv27VWyZEmNHz/e6jgAAAAAAAAAAMBDObT5EwAAAAAA5L3z58+rVatW2rt3r1avXq369etbHcltDR06VDt37tS2bdsUEBBgdRwAAAAAAAAAAOChaP4EAAAAAMCFnTx5Uk2bNtXZs2e1fv16PfTQQ1ZHclvr16/X+++/rxkzZqhmzZpWxwEAAAAAAAAAAB4sn9UBAAAAAADA3dm/f79CQ0OVkpKirVu30viZi86cOaOOHTuqTZs2eumll6yOAwAAAAAAAAAAPBzNnwAAAAAAuKANGzaofv36qlSpkjZt2qSyZctaHcltpaWl6fnnn5e/v79mzZpldRwAAAAAAAAAAACaPwEAAAAAcDWLFy9WkyZN1LBhQ61cuVIhISFWR3Jr77//vtavX6/PP/9cwcHBVscBAAAAAAAAAABwjebPlStXKjg4WMuWLbM6CgAXwboBANnH2gkArmHy5MkKCwtT9+7dtWDBAvn7+1sdya1t375dQ4cO1ZgxYxQaGmp1HAAAAAAAAAAAAEku0vxpjLE6AgAXw7oBANnH2gkAzs0Yo2HDhqlfv35655139NFHHylfPpf413qXdf78eUVGRuqZZ57RgAEDrI4DAAAAAAAAAACQziW+JWrWrJkSEhLUokULq6MoMTFR9erVszqG08uL48RncXcSEhI0a9YsxcfHWx0lV7FuwNFY11xXVFSU9u3bZ3UMl8DaCU/Aeg5XlZSUpOeff15jxozRvHnzNGzYMKsjuT1jjLp06aKkpCTNnTtXNpvN6kgAAAAAAAAAAADpXKL505nMnj1bZ86csTqG08uL48RncXeuXr2q7t27q0SJEmrWrJmioqJ09epVq2O5NWrVPbCuua5PPvlENWrUULVq1TRmzBj9+uuvVkeCHZgPyC2s53BFly9f1nPPPae4uDjFxcWpY8eOVkfyCOPGjdOKFSv05ZdfqlixYlbHAQAAAAAAAAAAyMDpmz83bdqkcuXKyWazacqUKZKkadOmKTAwUAEBAYqLi1OTJk0UFBSkMmXKKCoqKv21kyZNkp+fn4oXL66ePXuqVKlS8vPzU7169bRt27b0cX379lX+/PlVsmTJ9Md69+6twMBA2Ww2/fnnn5Kk/v3767XXXtPPP/8sm82mypUrS5K++uorBQUFadSoUXlxSHKFMUbjx4/X/fffL19fXxUqVEitWrXSTz/9lD4mJ8eJz8L5pKSkaPXq1erYsaMKFy6s9u3ba/ny5UpOTrY6Wo6xbkBiXcP/ufFT5gcPHtTQoUNVsWJF1alTR5MnT9bp06ctTuc8WDvhrFjP4elOnTqlJ554Qrt379Y333yjxo0bWx3JI2zZskVvv/22xowZowYNGlgdBwAAAAAAAAAA4FbGQSSZ6OhoR20ug+PHjxtJZvLkyemPvf3220aSWbdunUlISDBnzpwxDRo0MIGBgSYpKSl9XI8ePUxgYKA5cOCAuXbtmtm/f7+pU6eOKViwoDl27Fj6uI4dO5oSJUpk2O8HH3xgJJmzZ8+mP9a2bVtTqVKlDOOWL19uChYsaIYPH+7ot54uN4+vMcYMHTrU5M+f38ybN89cuHDB7NmzxzzyyCOmaNGi5tSpU+njcnKc3OWzMCb3P4/cdPLkSSPplj8fHx8jyRQoUMB06tTJLF261KSkpKS/LiwszISFhVmYPHtYNxwvOjraOPC0ketY16zlTPXSsGHDW9Y8m81mvLy8jM1mM6GhoWbixInmzz//TH+NM+XPS6ydzs2Vrz9ygvXcfbja9aQzOHLkiKlcubKpVKmSOXz4sNVxPMbp06dN6dKlTfPmzU1aWprVcQAAAAAAAAAAADIT4/R3/ryTevXqKSgoSMWKFVO7du105coVHTt2LMMYb2/v9DsFPfDAA5o2bZouXbqkOXPmOCRDs2bNdPHiRb3zzjsO2V5eS0xM1Pjx49WmTRt16tRJwcHBqlGjhmbMmKE///xTM2fOdNi++Cyc1407fl6+fFkxMTFq2bKlSpUqpX79+mnTpk0Wp3Ms1g33x7qGOzHGKDU1VcYY7dixQ6+99ppKliyppk2b6l//+peuX79udUSnw9oJK7Cew5Nt375ddevWVZEiRbRly5b0u8gid6Wlpen555+Xt7e35s6dK5vNZnUkAAAAAAAAAACATHlbHcCR8ufPL0l3/Nnq2rVrKyAgIMNPRXqy/fv36/Lly6pdu3aGx+vUqaP8+fNn+LlLR3Plz2LChAlasGCB1TGy7dq1a3cck5SUJEk6e/asZsyYoUmTJikwMFD33nuvDh06pCpVquR2zDzDuuGeWNecR0REhNUR9Ouvv2b5fGpqavr//ve//62vvvpKPj4+kqTVq1fr6aeflpeXV25GdDmsncgrrOfwVEuWLFHHjh319NNPKyoqSgEBAVZH8hjvvvuuvvnmG3333XcqUqSI1XEAAAAAAAAAAABuy+Xv/Hm3fH19dfbsWatjOIULFy5IkgoUKHDLcyEhIbp06VKu7p/PAq6CWnUdrGuA82A+ICdYz+GJJkyYoLZt2+qFF17QokWLaPzMQ+vWrdOYMWP00Ucf6dFHH7U6DgAAAAAAAAAAQJbc6s6f9kpOTtaFCxdUpkwZq6M4hZCQEEnK9Mvz3D5OrvxZvPrqq05xR7vs+uOPP7Rs2bIsx+TPn19JSUkqVqyY2rdvr/DwcH300UeS5FZ3/cwOV65VT8S65jxiYmKsjqCnnnpKv/zyy22fv3FXT5vNpmeeeUbt2rWTzWbTP/7xDzVq1CivYrol5gNyivUcniQ1NVX9+/fX1KlTNXToUA0bNszqSB7l+PHjateuncLDw9WjRw+r4wAAAAAAAAAAANyRRzZ/btiwQcYYhYaGpj/m7e19x58udVfVq1dXgQIF9P3332d4fNu2bUpKSspwxxNHHyc+C+fh4+Oj5ORkFShQQK1atVJERISaNm2a3hR1o/nTU1GrroV1DXdis9mUL18+paWlqU6dOmrXrp06deqU/vOuztC06g6YD8gp1nN4isuXL6t9+/Zau3atoqKiFBkZaXUkj5KcnKz27durSJEimjlzptVxAAAAAAAAAAAA7OIRP/uelpam8+fPKyUlRXv27FH//v1Vrlw5de7cOX1M5cqVFR8fryVLlig5OVlnz57Vb7/9dsu2ChcurJMnT+rXX3/VpUuXlJycrFWrVikoKEijRo3Kw3flOH5+fnrttde0aNEizZ8/XxcvXtTevXv18ssvq1SpUhnuepKT4yTxWTgbLy8v2Ww2+fr6qm3btlq2bJni4+M1b948tWjRIr3x0xNRq66NdQ234+3tLZvNpkcffVQTJkzQH3/8oS1btqhfv37pjZ+4e8wHOBrrOTzB77//rr/97W/6/vvvtXHjRho/LfD6669r9+7dWrRokQoWLGh1HAAAAAAAAAAAALs4ffPnlClTVKdOHUnSoEGD9Nxzz2natGmaMGGCJKlmzZo6evSoZs2apddee02S1LhxYx0+fDh9G9euXVONGjXk7++vBg0aqEqVKlq/fr18fX3Tx/Tq1UsNGzZU+/btVbVqVY0YMUL+/v6SpLp16+r48eOSpJdfflnFixfXAw88oKZNmyo+Pj5PjkNue/fddzV69GgNHz5cRYsW1RNPPKHy5ctrw4YNCgwMTB+X0+PEZ+E8vL291ahRI33++eeKj49XVFSUmjdvLh8fH6uj5RjrBiTWNfwfm80mSapataqGDx+uo0ePaseOHerTp49KlChhcTrnwdoJZ8V6Dnf2ww8/KDQ0VMnJydq6dWv6Ooy8ExcXp0mTJmn69Ol64IEHrI4DAAAAAAAAAABgN5sxxjhkQzaboqOjFRER4YjNOUzPnj0VGxurc+fOWR0lR5z1+GaHu3wWkmt/HgkJCYqJiVHbtm1VuHBhu18XHh4uSYqNjc2taE7DnWrVkWJiYhQZGSkHnTbcArVye85UL1FRUapRo4aqV69u92ucKb+rYD7kPle+/nB21G/e8KTrSXusWrVKkZGRCg0NVWxsrIKDg62O5HGOHDmi2rVrq2PHjpo6darVcQAAAAAAAAAAALIj1unv/OkIqampVkfA//BZWC84OFjdunXLVuOnJ6JWYS9qxfm1b98+W42fuHvMB7gy6hd56aOPPlLz5s0VERGhFStW0PhpgWvXrikiIkLly5fXuHHjrI4DAAAAAAAAAACQbd5WBwAAAAAAwBOkpqaqf//+mjp1qoYOHaphw4ZZHclj9erVS7/88ot27twpf39/q+MAAAAAAAAAAABkm1vf+fOtt97SnDlzlJCQoAoVKmjBggVWR/JYfBZwFdQq7EWtAP+H+QBXRv0ir1y+fFmtWrXSJ598oi+++ILGTwt9+umnmjt3rj799FNVrFjR6jgAAAAAAAAAAAB3xa3v/Dl69GiNHj3a6hgQnwVcB7UKe1ErwP9hPsCVUb/ICydPnlTz5s31xx9/aOPGjapTp47VkTzW3r171adPH73xxhtq3bq11XEAAAAAAAAAAADumlvf+RMAAAAAACv98MMPCg0NVVJSkrZu3Urjp4UuX76siIgIPfTQQxoxYoTVcQAAAAAAAAAAAHKE5k8AAAAAAHLBqlWr1KBBA1WtWlXfffed7r33XqsjebQuXbooPj5eCxYskI+Pj9VxAAAAAAAAAAAAcoTmTwAAAAAAHOyjjz5SixYtFBERoZUrVyo4ONjqSB5twoQJWrx4saKionTPPfdYHQcAAAAAAAAAACDHvK0OAAAAAACAu7h+/bq6d++uzz//XKNGjdKgQYOsjuTxNmzYoDfeeEMjR47UU089ZXUcAAAAAAAAAAAAh3Bo8+eWLVscuTnchOMLq504cUIxMTFWx4BFbqxB1ADs4S7nLOodzsZd5hY804kTJ1SmTBmrY+SqkydPqnXr1vrpp5+0ZMkSNW/e3OpIHu/48eOKjIxU8+bNacQFAAAAAAAAAABuxWaMMQ7ZkM3miM0ALiM6OloRERFWx8gz4eHhWrBggdUxALgYB11m5LmYmBhFRkZaHQMA3E5YWJhiY2OtjpEr/vOf/6hVq1by8/PT0qVLVa1aNasjebxr167pEdCaZQAAIABJREFUb3/7my5duqRt27YpKCjI6kgAAAAAAAAAAACOEuvQO396WjOc1cLDwyXJbb88dWae2uzszl/W4+7ZbDbWf9zCXZonXbV5FZ6D60G4khv16o6ioqLUtWtXPfHEE4qKilJISIjVkSDplVde0U8//UTjJwAAAAAAAAAAcEv5rA4AAAAAAIArSk1N1eDBg9WhQwd169ZNy5cvp/HTSUyfPl2ffvqp5s6dq/vvv9/qOAAAAAAAAAAAAA7n0Dt/AgAAAADgCS5duqSOHTtqzZo1mjt3rl544QWrI+F/tmzZoldffVXvvvuu2rRpY3UcAAAAAAAAAACAXEHzJwAAAAAA2XDkyBG1bNlSCQkJ2rhxox577DGrI+F/Tp06pfDwcD3zzDN65513rI4DAAAAAAAAAACQa/jZdwAAAAAA7LR69WrVqVNH/v7+2rp1K42fTiQ5OVkREREKCAjQvHnzlC8f/8kDAAAAAAAAAAC4L74JAQAAAADADjNnzlTz5s3VpEkTbdq0SWXLlrU6Ev6iX79+2rVrlxYvXqyQkBCr4wAAAAAAAAAAAOQqmj8BAAAAAMjC9evX1aVLF/Xq1UsjR47UF198IX9/f6tj4S/mzZunGTNmaPbs2XrwwQetjgMAAAAAAAAAAJDrnL75s2fPnrLZbOl/nTp1umXM2rVr9eabbyotLU2tW7dWuXLl5Ofnp9KlS+u5557Tnj177nr/aWlpmjBhgurVq3fLc0uXLtXYsWOVmpqa4fElS5ZkyFy0aNG73r9VOO5wd85Wv3AO1AWQNeYIXEVu1OrIkSMzXGve+KtevXr6GGrVPf3xxx968skntXDhQi1atEiDBg2yOhJusnv3bvXo0UODBg1SRESE1XEAAAAAAAAAAADyhNM3f0pS4cKFtWrVKh08eFCzZ8/O8Ny7776rSZMm6a233lJaWpq+/fZbffHFF4qPj9emTZuUmJiov/3tbzp58mS293v48GH97W9/04ABA3T16tVbnm/ZsqX8/Pz097//XRcuXEh//LnnntOJEye0ceNGNW3aNPtv2Elw3OGunLF+YT3qAsgacwSuIjdr9U6oVfezefNm1a5dW+fPn9eOHTvUsmVLqyPhJufOnVObNm1Ur149jRw50uo4AAAAAAAAAAAAecYlmj/9/f3VuHFjValSRb6+vumPv/fee/ryyy8VExOjggULSpLq1q2r+vXrKyAgQBUqVNCoUaOUkJCguXPnZmufP/zwgwYPHqyXX35ZtWrVuu24fv366aGHHlLTpk2VkpIiSbLZbCpdurQaNGig++67L/tv2Elw3OGOnLV+YS3qAsgacwSuIjdrVfrvz0obYzL87du3L8MYatV9TJkyRQ0bNtQjjzyirVu3qmrVqlZHwk1SU1PVoUMHpaWl6csvv5SXl5fVkQAAAAAAAAAAAPKMSzR/ZubIkSN655139M9//lN+fn6SJG9vby1btizDuIoVK0qSfv7552xt/6GHHtLChQvVsWPHDI2PmRk2bJh2796tiRMnZmsfrojjDldG/SIz1AWQNeYIXEVu12p2UKuu7dq1a+ratav69u2rV199VXFxcQoJCbE6FjLx+uuva+PGjVq4cKGKFi1qdRwAAAAAAAAAAIA85bLNn5MmTZIx5o4/u5eYmChJCgoKyrUshQoV0hNPPKGJEyfKGJNr+3EGHHe4MuoXmaEugKwxR+AqqFU4wpEjR/T//t//05IlS7Ry5Uq99957ypfPZf+12a1FRUVpwoQJmj59uh599FGr4wAAAAAAAAAAAOQ5l/0Wa8WKFapataoCAgKyHLd9+3ZJUv369XM1z8MPP6zff/9dP/zwQ67ux2ocd7gy6heZoS6ArDFH4CryolbffPNNFSpUSPnz51eFChXUqlUr7dixI9Ox1KrrWbFihR577DHly5dPO3bsUOPGja2OhNvYs2ePunXrpv79+6tz585WxwEAAAAAAAAAALCESzZ/XrlyRb/88osqVap02zGnT5/Wl19+qX79+qlu3bp3vANQTt13332SpL179+bqfqzEcYcro36RGeoCyBpzBK4iL2r1hRde0NKlS3X8+HFdvnxZUVFROnbsmJ544gnt37//lvHUquswxmjs2LFq2bKlmjdvru+++04VK1a0OhZu4/z582rTpo1q1aqlsWPHWh0HAAAAAAAAAADAMt5WB7gbZ86ckTEmy7v61K1bV1euXFFERIRGjhwpHx+fXM10I8vp06dzdT9W4rjDlVG/yAx1AWSNOQJXkRe1WrZsWZUtWzb9n0NDQzVnzhzVqlVLU6dO1bRp0zKMp1Zdw7lz59SpUyetX79e48ePV79+/ayOhCykpqaqffv2un79uhYtWqT8+fNbHQkAAAAAAAAAAMAyLtn8ee3aNUmSr6/vbccUL15cs2fP1oMPPpgnmfz9/TNkc0ccd7gy6heZoS6ArDFH4CqsqtUaNWrIy8tLhw4duuU5atX57dq1S23btlVycrI2bNig0NBQqyPhDl5//XVt3LhR33zzjYoXL251HAAAAAAAAAAAAEu55M++3/giNTU19bZjihUrppCQkLyKpKSkJEn/l80dcdzhyqhfZIa6ALLGHIGrsKpW09LSlJaWlmnTKbXq3ObNm6f69eurXLly+v7772n8dAGfffaZJk6cqE8++UR16tSxOg4AAAAAAAAAAIDlXPLOn8WLF5fNZlNCQsJtxyxbtiwPEyk9S4kSJfJ0v3mJ4w5XRv0iM9QFkDXmCFxFXtRqo0aNtHr16gyP7dixQ8YY1a1b95bx1Kpzun79ut544w1NnjxZffr00Ycffihvb5f812KPsnnzZvXo0UNvvfWWOnToYHUcAAAAAAAAAAAAp+CSd/4MCAhQxYoVdeLEiUyfP3LkiEqUKKHIyMhbnmvXrp1KlCih//znPw7NdCNLjRo1HLpdZ8JxhyujfpEZ6gLIGnMEriIvavX333/Xl19+qQsXLig5OVlbtmzRSy+9pHLlyunll1++ZTy16nxOnDihJ598UnPmzFFMTIw++ugjGj9dwG+//abWrVurSZMmGj58uNVxAAAAAAAAAAAAnIZLNn9KUrNmzbR//34lJibe8pwx5ravS0pK0pkzZxQXF5fl9rdu3ar69evrnnvu0bZt2/TDDz+oVKlSevzxx7Vx48Zbxu/YsUOlS5dWzZo1s/9mXAjHHa6M+kVmqAsga8wRuIrcrtXGjRtryJAhKlOmjAICAhQREaHHH39cW7duVZEiRW4ZT606l7Vr1+qRRx7RpUuXtGPHDoWFhVkdCXZITExU27ZtVbRoUX322WfKl89l/xMGAAAAAAAAAACAw7nsbU769OmjadOmaeHCherUqVOG5+677z6dPn0609ctWLBATz75pO69994stx8aGqpNmzbZleXcuXNat26dRo4cKZvNZt8bcFEcd7gy6heZoS6ArDFH4Cpyu1bHjRuncePG2ZWFWnUexhi9//77evvtt9WiRQvNnTtXwcHBVseCHYwx6ty5s3799Vdt27ZNQUFBVkcCAAAAAAAAAABwKi5x24zExEStXr1ahw8fVlJSkiSpcuXKGj58uIYPH67Lly/btZ3U1FQtWbJEly5dUrt27RyWb9iwYapVq5b69u0r6b9fUp08eVKbNm3SkSNHHLafvMZxh7tx5vqFdagLIGvMEbgKahU3O3PmjBo3bqx3331XH374oRYtWkTjpwsZOnSoFi9erAULFqhSpUpWxwEAAAAAAAAAAHA6LtH8GR8fr8aNG6tKlSp68cUX0x9/8803FR4ernbt2ikhIeGO29mwYYMWLlyoVatWKSAgwCHZxo8fr927d2vlypXy8fGRJMXFxal06dJq0KCBVqxY4ZD9WIHjDnfkrPULa1EXQNaYI3AV1Cpu+Prrr1WrVi0dOnRI33zzjfr168ddWF3IwoULNWrUKE2ZMkVPPvmk1XEAAAAAAAAAAACcks0YYxyyIZtN0dHRioiIcMTmsmXNmjX6+uuv9d577+XpfuPi4nTgwAG98cYb8vLyytN9S1J4eLgkKTY2Ns/3LXnucZesrXerWF1vjubJ9eto7jQfqAvHiYmJUWRkpBx0mZHnXD1/bmGOOB93Oz87CrXqnPKiXlNSUjRy5EiNGDFCrVq10uzZsxUSEpJr+4Pj7dq1S/Xr11f37t01YcIEq+MAAAAAAAAAAAA4q1i3aP70VHzZbx1PrHfqDbfjifMBd+bqzZOunh+eg/MzXElu1+uJEyfUoUMH7dixQ++995769euXK/tB7jl16pQee+wxVatWTStXrpS3t7fVkQAAAAAAAAAAAJxVLN+kAAAAAABc2tq1a9WpUyeFhIRo69ateuihh6yOhGy6du2aWrdurYCAAEVHR9P4CQAAAAAAAAAAcAf5rA4AAAAAAMDdSElJ0bBhw9SoUSM9++yz+v7772n8dFG9e/fWgQMHtGjRIhUqVMjqOAAAAAAAAAAAAE6PW2kAAAAAAFzOsWPH1L59e+3atUvTp09X9+7drY6Eu/Tee+/ps88+09KlS/XAAw9YHQcAAAAAAAAAAMAl0PwJAAAAAHApcXFxevHFF1WiRAlt375d1atXtzoS7tJXX32lIUOGaPz48WratKnVcQAAAAAAAAAAAFyGQ5s/J0yYoNjYWEduElnYunWrJCk8PNziJPAUW7dupd6QKdZ/3OzEiRNWR3AI1jw4O64H4Uq2bt2q0NDQHG3j+vXreuONNzR58mR16tRJM2bMUEBAgIMSIq/9+OOPateunZ5//nn17dvX6jgAAAAAAAAAAAAuxWHNn2FhYY7aFOyU0y9OcffCwsJUtmxZq2Pkqbp161odAU6K9R+ZKVOmjEvXRtmyZV06PzwH14NwJaGhoTm6pvztt9/Url077d+/X/Pnz1eHDh0cmA55LT4+Xi1btlT16tU1Y8YMq+MAAAAAAAAAAAC4HJsxxlgdAgAAAACA25k/f7569+6typUrKzo6WpUrV7Y6EnIgOTlZjRo10tGjR7V9+3YVL17c6kgAAAAAAAAAAACuJjaf1QkAAAAAAMjM+fPn1a5dO/3jH//Qiy++qM2bN9P46QZ69eqlHTt2aNmyZTR+AgAAAAAAAAAA3CWH/ew7AAAAAACOsn79er3wwgtKSkrSsmXL1KxZM6sjwQHGjBmjOXPmaOHChapRo4bVcQAAAAAAAAAAAFwWd/4EAAAAADiN5ORkDRs2TE8//bTq1Kmj/fv30/jpJmJjYzVkyBBNmDBBzz33nNVxAAAAAAAAAAAAXBp3/gQAAAAAOIUff/xRHTt21JEjRzR9+nR1797d6khwkO3bt6tz587q16+f+vTpY3UcAAAAAAAAAAAAl8edPwEAAAAAljLGaObMmapdu7Z8fHy0c+dOGj/dyNGjR9WiRQs1bNhQH3zwgdVxAAAAAAAAAAAA3ALNnwAAAAAAy5w+fVotWrRQ79691adPH23atEn33Xef1bHgIOfOnVOTJk1UtmxZRUdHy8vLy+pIAAAAAAAAAAAAboGffQcAAAAAWGLx4sXq3r27ChYsqPXr16t+/fpWR4IDJSUlKTw8XElJSVq+fLkCAwOtjgQAAAAAAAAAAOA2uPMnAAAAACBPJSYmql+/fmrTpo2aNGmiPXv20PjpZowx6tq1q3bu3KmlS5eqZMmSVkcCAAAAAAAAAABwK9z5EwAAAACQZ7Zv365OnTrp/PnzWrx4sVq1amV1JOSCIUOGKDo6WitWrFCNGjWsjgMAAAAAAAAAAOB2uPMnAAAAACDXpaSkaOzYsapfv77Kly+v3bt30/jppubMmaPRo0dr8uTJeuaZZ6yOAwAAAAAAAAAA4Ja48ycAAAAAIFft379fL774ovbu3asPP/xQr7zyimw2m9WxkAs2bNignj17asiQIerRo4fVcQAAAAAAAAAAANwWd/4EAAAAAOSKlJQUjR49Wo8++qhsNpt27typPn360Pjppg4cOKDWrVurVatWGj58uNVxAAAAAAAAAAAA3JrNGGOsDgEAAAAAcC/79u1Tly5dtG/fPg0bNkwDBw6Ul5eX1bGQS06dOqXQ0FCVLVtWa9eula+vr9WRAAAAAAAAAAAA3Fksd/4EAAAAADjM9evXNWzYMD366KPKnz+/du/erUGDBtH46cYSExPVunVreXt7a9GiRTR+AgAAAAAAAAAA5AFvqwMAAAAAANzD+vXr1bNnT508eVJjx45V3759lS8f/59Dd5aWlqaOHTvq8OHD2rx5s4oVK2Z1JAAAAAAAAAAAAI/At3AAAAAAgBw5f/68evToob///e+qUqWK9u3bp/79+9P46QEGDBigVatWKS4uTlWqVLE6DgAAAAAAAAAAgMfgzp8AAAAAgLuSlpamuXPn6o033pC/v78WLlyo1q1bWx0LeeTjjz/WpEmTNG/ePD3++ONWxwEAAAAAAAAAAPAo3IYFAAAAAJBt27dvV926ddWjRw916tRJBw4coPHTgyxdulS9e/fW6NGj1bFjR6vjAAAAAAAAAAAAeByaPwEAAAAAdjt37pz69eununXryt/fXzt37tTEiRNVsGBBq6Mhj2zevFnt27dX165dNXjwYKvjAAAAAAAAAAAAeCR+9h0AAAAAcEdJSUmaMmWKhg8frqCgIEVFRSkiIsLqWMhjBw4cUIsWLfTUU09p6tSpVscBAAAAAAAAAADwWDZjjLE6BAAAAADAeS1cuFCDBw/WiRMnNHDgQL355psKCAiwOhby2O+//67HH39cJUuW1Lp16xQYGGh1JAAAAAAAAAAAAE8Vy50/AQAAAACZ2rFjhwYOHKhvv/1WYWFhWr16tSpWrGh1LFggISFBzZo1U2BgoFauXEnjJwAAAAAAAAAAgMXy/M6fJ06c0ObNm/Nyl4DdypYtq7p161odwylt2bJFx48ftzoGABfjqj8HzPUKAE+XlJSk6dOna8uWLapWrZqef/55VapUKcfb5XrbNSUmJqpRo0Y6evSoNm/erHLlylkdCQAAAAAAAAAAwNPF5nnzZ0xMjCIjI/Nyl4DdwsLCFBsba3UMpxQeHq4FCxZYHQOAi8njywyH4XoFAHIH19uuJzU1VREREVq3bp02btyomjVrWh0JAAAAAAAAAAAAVv7su6s2g8B9hYeHWx3B6fFlPQB7uUvzJNcrAOA4XG+7pv79+2vVqlVas2YNjZ8AAAAAAAAAAABOxLLmTwAAAAAA4LyGDh2q6dOnKyYmRvXr17c6DgAAAAAAAAAAAP6C5k8AAAAAAJDBxx9/rJEjR2rWrFlq06aN1XEAAAAAAAAAAABwk3xWBwAAAAAAAM5j6dKl6t27t0aMGKGuXbtaHQcAAAAAAAAAAACZoPkTAAAAAABIkjZu3KjIyEh169ZNb7/9ttVxAAAAAAAAAAAAcBs0fwIAAAAAAO3bt0+tWrVSo0aNNGXKFKvjAAAAAAAAAAAAIAs0fwIAAAAA4OFOnDihpk2bqmbNmvryyy/l5eVldSQAAAAAAAAAAABkwembPxcuXKiKFSvKZrPJZrOpbNmymj17dvrzXbt2VaFChWSz2eTj46OHH35Yx44dy/F+x40bp+LFi8tms2nGjBm3HdelSxf5+fnJZrPp2rVrOd7v1q1bdf/99ytfvnyy2WwqUaKERo4cmePtOtLNn0nJkiXVqVMnq2PBja1cuVLBwcFatmyZpTnsXRdyYsyYMQoODpbNZtPu3btzZR+O8MUXX6hOnToqWLCg7r33XnXp0kWnTp266+398MMPateunSpUqCBfX18VLVpUDz30UI7Wv9yuG6vXQlepFcAVvfTSSypYsOAt88tZzkc3OHotlqSDBw+qT58+evDBB1WwYEF5e3srODhYVapUUbNmzbRlyxYHpXd+N6/zmf2VL1/e6pgZuErtwvmcO3dOzzzzjIKDg7V48WL5+flZHQkAAAAAAAAAAAB34PTNn23bttXRo0dVqVIlBQcH6/jx4+ratWv687Nnz9aqVaskSb1799auXbtUrly5HO934MCB2rx58x3HzZkzRwMHDszx/m4IDQ3Vjz/+qGeffVbSf7+AHzJkiMO27wg3fyanTp3S/PnzrY4FN2aMsTqCJPvXhZx488039fHHH+fqPnIqOjpaHTt2VHh4uE6cOKG4uDht3LhRTZo0UUpKSra3t3fvXtWrV08lS5bU+vXrlZCQoM2bN6tx48basGHDXefM7bqxei10hVoBXNUnn3yiWbNm3fK4s5yPJMevxdJ/r6tr1KihPXv2aPz48Tp+/LiuXLmiXbt2acSIEbpw4YL27t3r4HfivG5e540xMsYoJSVFV69e1enTpxUQEGB1zAxcoXbhfBITE9WyZUtduXJFK1euVKFChayOBAAAAAAAAAAAADs4ffOns0lMTFS9evWsjpGnPPE9I/dlp66aNWumhIQEtWjRIpdTwR4ff/yx7rnnHr3++usKDg5WrVq1NGDAAO3evVvbtm3L9vbGjRunkJAQTZw4UeXLl5efn5+qVKmiESNGyN/fP8NY6gbujPOt83OmdcXRa/HWrVvVo0cPNWjQQOvWrVOjRo0UEhIiX19fVaxYUZGRkRo6dKiSkpLs3qa71rSXl5f8/f1VvHhxValSxeo4dnGm2oVzSU1NVYcOHXTo0CGtWbNGZcuWtToSAAAAAAAAAAAA7ETzZzbNnj1bZ86cyfQ5m82Wx2nyRlbvGbhbVtaVMUaxsbGaOXOmJft3dcePH1epUqUyrHk3GgV+++23bG/v3LlzSkhIUHx8fIbH8+fPf8vP01I3cGeOqm9q1THy4rouJ5+Vo9fikSNHKjU1VWPGjJG3t3emYxo1aqRXXnnF7m16Qk0vWbLE6gi3cPbahfMwxuill17Sv//9b61YsULVqlWzOhIAAAAAAAAAAACywa2bP1NTUzV06FCVK1dO/v7+qlmzpqKjo9Of//bbb/XAAw8oODhYfn5+qlGjhlavXn3b7fXv31+vvfaafv75Z9lsNlWuXDn9uXz58mnFihVq0qSJgoODVapUKX366acZXv/VV18pKChIo0aNyvZ7mTZtmgIDAxUQEKC4uDg1adJEQUFBKlOmjKKiotLHTZo0SX5+fipevLh69uypUqVKyc/PT/Xq1ctwF6i+ffsqf/78KlmyZPpjvXv3VmBgoGw2m/788887vufsyOpYv/TSS7LZbLLZbKpUqZJ27dolSerSpYsCAgIUHByspUuXSsr6M33//fcVEBCgggUL6syZM3rttddUunRpHTx48K4yI+e++eYbPfbYYwoICFBQUJBq1KihixcvZlpXt/v8Zs+erXLlyslms2nKlCmS7J8P0n9rZvTo0apatar8/f1VtGhRVahQQaNHj1ZERIRD3qcxRuPHj9f9998vX19fFSpUSK1atdJPP/10V+Nudvr0aZUvX17e3t5q3LixJPvnsL1rQnZUrFjxlmaeU6dOpT93g71rXp06dXTlyhU99dRT+u677247zh3qxtNqxRPNmzdPtWvXlp+fnwIDA1W+fHmNGDFCUtbnwtudb+90LWNvrdpTU7ebTw0aNLD7PG2vrN5XdubqnY55dubcBx98oKpVq8rX11fBwcF6/fXXM4zZtGmTU60rjlyLk5KStG7dOhUpUkSPPfaY3Rmo6YyoXbiaAQMG6PPPP1dsbGy25j4AAAAAAAAAAACchMlj0dHR5m52W6lSJRMcHJzpc1u2bDGSTL9+/TI8PnDgQOPr62sWLFhgzp8/b9566y2TL18+s2PHDmOMMbGxsWbYsGEmPj7enDt3zoSGhpoiRYqkv/7w4cNGkpk+fXr6Y23btjWVKlXKsJ+3337bSDLr1q0zFy5cMPHx8aZp06bG19fXXLlyJX3c8uXLTcGCBc3w4cPv+H4bNWpkJJnz589nup+EhARz5swZ06BBAxMYGGiSkpLSx/Xo0cMEBgaaAwcOmGvXrpn9+/ebOnXqmIIFC5pjx46lj+vYsaMpUaJEhv1+8MEHRpI5e/Zslu/ZmKw/k5vd6Vi3bdvWeHl5md9//z3D6zp06GCWLl2a/s93+kxvHKN+/fqZyZMnmzZt2pgff/zRroxhYWEmLCzMrrGeKLvH5/LlyyYoKMiMHTvWJCYmmlOnTpk2bdqk11ZWc+nmz+/48eNGkpk8efItY+80H0aNGmW8vLxMXFycuXr1qtm5c6cpUaKEefLJJ+/qOGS2LgwdOtTkz5/fzJs3z1y4cMHs2bPHPPLII6Zo0aLm1KlT2R4XFRVlJJldu3YZY4xJSkoybdu2NXFxcRmy2DuH7V0T7LVhwwbj4+NjJk2aZC5evGj27dtn7r//ftOoUaMM4+xd865evWpq165tJBlJ5oEHHjBjx441586du2WsM9ZNdtZCT6qVuz3fO4u7yT9hwgQjyYwZM8acO3fOxMfHm48//th07NjRGGPfufDm+r7Tec/eWrW3pm43n+w9T9vL3vP5nebqnY55dt63zWYzH374oTl//ry5evWqmTp1aob5ZYxxqvORI9fiQ4cOGUkmNDQ0Wxk8paYzW+f79etn9u7de8sxoXazxvW283jnnXeMl5eXiYqKsjoKAAAAAAAAAAAA7k6MSzV/3mgMut3fX5s/ExMTTUBAgGnXrl36Y1evXjW+vr6mV69eme5j9OjRRpI5c+aMMSb7zZ+JiYnpj/3rX/8yksy+ffuy/V6Nybr586/7ufHl7pEjR9If69Gjxy1fUO/YscNIMv/85z/TH8vL5s+b3Xys165daySZkSNHpo9JSEgw9913n0lJSTHG2PeZZnaM7MWX0VnL7vHZt2+fkWSWL1+e6fP2ziVjsm5YuNN8qFOnjnnssccybK979+4mX7585vr163a/nxtuXheuXr1qChQokKEujTFm+/btRlJ6s42944zJ2NCXnJxs2rdvb1atWnVLluw09NmzJmTHkCFDMqy/ZcqUMcePH7+rbRnz36bFjz7rm7mfAAAgAElEQVT6yFSrVi19m8WLFzcbNmzIMM4Z68betdDTasXTmj+TkpJMSEiIadiwYYbHU1JSzMSJEzN9zc3nwpvr257znj21mp2aut18suc8ba+7PZ/fPFfvdMyzM+cCAgLMM888k2Hczc3VxjjX+cgYx63F33//vZFknn766bvKcYO71vTt/j0kq+ZPajdzXG87h4kTJxqbzWZmzpxpdRQAAAAAAAAAAADcvRiX+tn34OBgGWNu+duyZcstYw8ePKirV6+qevXq6Y/5+/urZMmSt/3ZXB8fH0n//WnDnLqxreT/z96dR0dR5f//fzVk6YSQEHYFIrsLoKigBNlRQRREliQCKo4oixpA/IiiMgyyyICCGyLI8B11hCSAICKKAhFxBIERAijIMrIYlrAkLAmkk9zfH/7oIRCSTtJJdXeej3NyzkzV7ap33X7fe4vTb6scjmIfKz8BAQEunadFixYKDg4u8JXBpeXyvu7UqZMaN26sf/zjHzLGSJIWLFigmJgYlS9fXlLRvlNYp379+qpevboGDBigcePG6ffffy/xc+Y1Hs6fP+/MqYuys7Pl7+/vzK3i2LFjh86ePasWLVrk2t6yZUsFBAQ4X5ftarvL4+zXr5+qV6/ufIW3uxRnTnj55Zc1e/ZsrVq1SmfPntW+ffvUunVrRUZG6uDBg0WKx9/fX7Gxsfr111+1fv169ezZU8eOHVPfvn116tSpIh3TVaWVN2UxV8qSpKQkpaamqkuXLrm2ly9fXsOHD8/zMwXdd7iy7rmSq0XJqcu5sk67qqjr+eVjtaA+d/W69+zZo/T0dHXu3LlQ15Gf0phX3DkXh4SESJLS09MLHcelfDmnL/93yNXGdV7IXXiSefPmaeTIkZo6daqefPJJq8MBAAAAAAAAAABAMXhV8WdhnDt3TpL0yiuvyGazOf/279/v/GF7+fLl6tChg6pVq6bAwEC98MILVoZc4gIDA5WSkmLJuQvqa5vNpiFDhmjfvn1atWqVJOmjjz7SE0884WzjyncKzxEUFKTVq1erTZs2mjhxourXr6+YmBhlZGSUahzdunXT5s2btXTpUmVkZGjTpk1asmSJHnjgAbcULKSmpkr6X+HMpSpVqqQzZ84Uqt2lnnnmGe3evVuzZs3SL7/8UuxYL1eUOeHw4cOaMmWKnnrqKXXq1EkVKlRQvXr1NGfOHCUnJ2vq1KnFjuvOO+/UZ599pqFDhyolJUVr1qwp9jELqyTypqzlSllz+vRpSX9+R1dT2PsOV9Y9V3K1KDl1OVfWaVe5az0vqM9dve5Dhw5JkqpVq+b6RRSBO+cVd8/FdevWld1u12+//Vaoz5XlnJ4xY0auItbCKMu5C2v961//0qBBgzR+/HiNGjXK6nAAAAAAAAAAAABQTD5b/HnxR9Dp06fn+aTQAwcO6KGHHlLNmjW1YcMGpaWlacqUKRZHXXIcDodSU1NVu3btUjnf2rVrNX36dElyua8HDhwou92uDz/8ULt27VJoaKiuu+465/6CvlN4niZNmmjZsmVKTk7W6NGjFRcXp2nTppVqDOPGjVOnTp00cOBAhYaGqlevXoqKitKcOXPccvyLhRt5FZpcOuZcbXepqKgoffPNN6pUqZIeffRRZWVluSVmqehzwu7du5Wdna1rr7021/bQ0FBVrlxZO3bsKHQsvXv3zvPaHnnkEUnFfxJdUbgrby6dC8tarpQ1F8fE8ePH89xflPsOV9Y9V3K1KDmVl4LWaVe5az0vqM9dvW673S5JunDhgusXUQTuXI/cPRcHBgaqS5cuOn78uH744Yertjt58qQGDRokiZwujrKcu7DO559/roEDByo2NlavvPKK1eEAAAAAAAAAAADADfysDqCk1KlTR3a7XVu2bMlz/7Zt2+RwODRs2DDVr19f0p9PAPJViYmJMsaoVatWzm1+fn4l9lr6zZs3q0KFCpJc7+vw8HBFR0drwYIFqlix4hWvISzoO4VnSU5OVmpqqm666SZVq1ZNkydP1sqVK0vkqYT52bFjh/bu3auUlBT5+bl/ymvatKlCQkK0adOmXNs3bNigzMxM3X777YVqd6mOHTuqatWqmj17th588EFNmDBB48aNc+4vzhjOa05wxcWCk8OHD+fafubMGZ08eVJ16tQpdCwXLlzQL7/8optvvjnX9l27dknSFdtLg7vy5tK5sKzlSllTt25dVa5cWStXrtTLL798xf6i3He4su65kqtFyam8FLROu8pd63lBfV6YMVeuXDl99913Gjp0aLFiyo8716OSmIvHjRunr776Ss8995wSExMVFBR0RZvt27c7Yyen/3T48GGNGTNG8+bNc/kzZTl3YY1Vq1YpOjpajz76qN58802rwwEAAAAAAAAAAICb+OyTP+12ux5//HHNnz9fM2fO1OnTp5Wdna1Dhw7p8OHDioiIkCR9++23On/+vHbv3q0NGzYUeNzKlSsrOTlZv//+u86cOVOoYpoVK1YoNDRUEydOLPJ1uSonJ0enTp1SVlaWkpKSNGLECEVERGjgwIHONg0bNtTJkye1ZMkSORwOpaSkaP/+/VccqzDX7HA4dPToUSUmJjoLngrT10OHDtWFCxf0xRdfqHv37rn2FfSdwrMkJydryJAh2rlzpzIzM/Xzzz9r//79zgKy4oylwnjmmWcUERGhs2fPlsjx7Xa7Ro0apcWLF+uTTz7R6dOntW3bNg0dOlTXXHONBg8eXKh2eenRo4cGDhyoiRMnavPmzc7tro5hybU5wRX16tVTx44dNWfOHK1du1YZGRk6ePCgM/5LX5dbmDnvoYceUnx8vFJTU5WWlqalS5fqxRdf1IMPPpir+NNb8iavubCs5UpZExgYqDFjxmjt2rWKjY3VH3/8oZycHJ05c0a//PKLS2vh5fldvnz5Atc9V3K1ODl1ufzWaVe5az0vqM9dve5q1aqpd+/eWrhwoebOnavTp08rKSlJs2fPLtL1XY0716OSmIubN2+uf/3rX9q+fbvatm2rL7/8UmlpaXI4HPrvf/+rOXPm6IknnpC/v78k1+7vfDmnjTHKyMjQokWLFBoa6vLnpLKduyh969evV8+ePdWnTx/NmTPHp/+DRwAAAAAAAAAAgDLHlLK4uDhTmNMuXrzYNGjQwEgyksx1111n5s2b59z/5JNPmvDwcCPJ+Pv7m9tvv90cOHDAGGPMhQsXzOjRo01ERITx8/Mz1apVM7179zY7duwwxhgzevRoU7lyZVOpUiXTt29f8+677xpJpkGDBmbEiBGmRo0aRpKpUKGC6dWrlzHGmP/85z/muuuuM0FBQaZNmzbmueeeM0FBQUaSadSokdm7d6/55JNPnDHVrl3bbN++3RhjzJdffmkqVqxoJkyYcNXrXb9+vWnSpIkpV66ckWRq1qxpJk6caN577z0THByc6zyzZ882oaGhzn757bffjDHGDB482Pj7+5tatWoZPz8/Exoaanr27Gn27t2b61wnTpwwHTt2NHa73dSrV888++yz5v/+7/+MJNOwYUNnP15+ze+//36u7+Rqf4sXL3aeK7++vniei2699Vbz0ksv5dk/+X2nU6ZMcX4XderUMR9//HGB+XWpPn36mD59+hTqM2VJYfvn999/N61btzbh4eGmfPny5tprrzUvv/yyycrKMsbkP5Yu/f7eeecdU7NmTSPJBAcHmx49ehRqPKxevdpUqVIlV276+/ubG2+80SxatKhQffDGG2/kOS/k5OSYqVOnmkaNGhl/f38THh5uHnroIbNr165cn3el3aJFi5zzR926dc2xY8fM6dOnTZ06dYwkExISYj766CNjjOtj2NU5wVXHjx83I0aMMA0bNjSBgYEmJCTE3HXXXeazzz7L1c6VOc8YY1auXGmio6NNgwYNTGBgoAkICDDXX3+9GTdunDl//nyutp6UN5evT67MhWUpVwq73nuaosb/7rvvmmbNmhm73W7sdru59dZbzXvvvWeMKXgtvDy/jxw5UuC9jKtznCs55eo6mt867ar8rqswY7WgPnd1zJ05c8YMGjTIVKlSxYSEhJg2bdqYsWPHOu/ltm7d6lHrkTHun4svOnDggHn++edNs2bNTEhIiClfvrypVKmSufXWW80TTzxhfvjhB2dbX89pV+f5V155xRhjyF0XcL9durZs2WLCw8PNgw8+aBwOh9XhAAAAAAAAAAAAwL3ibcYY43KlqBvEx8crOjpapXzaMmXIkCFKSEjQiRMnrA6lSO6//369++67qlevXqmet2/fvpKkhISEUj2vt/DW/pk5c6Z2796t6dOnO7dlZmbqxRdf1MyZM3Xq1Kk8X23rS7x9TrBCWc0bd+aKt6/33hK/Fblq1Trt7crqvFJY5LTnced34q33k97ot99+U7t27dSsWTMtW7ZMdrvd6pAAAAAAAAAAAADgXgl+VkeAkpGdnW11CC5zOBzOV4gmJSXJbrfz4zvc4siRI4qNjdWWLVtybQ8ICFBERIQcDoccDkeZKLbxpjnBamU9b8gV71Fauco6XXxlfV5xFTntechd73TgwAHdc889ql+/vj777DMKPwEAAAAAAAAAAHxUOasDAEaPHq3du3frt99+0+OPP67XXnvN6pDgI4KCguTv76+5c+fq6NGjcjgcSk5O1ocffqixY8cqJiZGycnJstlsBf7FxMRYfTklZufOnWW+Dy7lSt6EhoZaHSZQarnqyjrNPJI/1iPXeFJO40+sid7njz/+UMeOHRUeHq7ly5crJCTE6pAAAAAAAAAAAABQQnjyp48ZM2aM5s2bp8zMTNWrV09Tp05Vnz59rA4rX8HBwbrhhhtUq1Ytvffee7rpppusDgk+IiwsTCtXrtT48ePVuHFjnTt3TiEhIWrSpIlef/11PfXUU/Lz8/P41zoXhytzwg033ODTfVBYruSNL/LG9aOsK61cdWWdZh7JH+uRazwpp/Gnsromeqvjx4/r3nvvlb+/v77++muFh4dbHRIAAAAAAAAAAABKkM2U8q/M8fHxio6OLvM/bsPz9O3bV5KUkJBgcSSeif4BUBjevt57e/wA4Im4nyw5aWlp6ty5s1JTU7V27Vpde+21VocEAAAAAAAAAACAkpXAkz8BAAAAAPBS6enp6t69u44cOaLvv/+ewk8AAAAAAAAAAIAyguJPAAAAAAC8UGZmpnr37q2dO3cqMTFR9erVszokAAAAAAAAAAAAlBKKPwEAAAAA8DIOh0N9+/bV+vXrtWbNGt10001WhwQAAAAAAAAAAIBSRPEnAAAAAABeJCsrSw8//LDWrFmjr7/+Ws2bN7c6JAAAAAAAAAAAAJQyy4o/+/bta9WpgTytX79erVq1sjoMj7Z+/XrGLgCXHDp0yOoQ3II5DwDch/tt98jOztZjjz2mFStWaPny5YqMjLQ6JAAAAAAAAAAAAFignNUBwDULFy70mUIaAN7p0KFDWrhwodVhAECZxf0ggOzsbA0cOFBLlizRF198oQ4dOlgdEgAAAAAAAAAAACxi2ZM/ExISrDq1V7LZbBo5cqSioqKsDsVn8XS3grVq1YqxW4bFx8crOjqaHIBLLuaLtyPf4Um4H4S34367eHJycvSXv/xFixYt0rJly9SxY0erQwIAAAAAAAAAAICFLCv+BAAAAAAABTPGaNiwYVqwYIEWL16szp07Wx0SAAAAAAAAAAAALMZr3wEAAAAA8FDGGD399NOaN2+eFi5cqPvvv9/qkAAAAAAAAAAAAOABePInAAAAAAAeyBijZ599Vh9++KEWLlyo7t27Wx0SAAAAAAAAAAAAPARP/gQAAAAAwMMYYzRixAjNnj1b8fHx6tGjh9UhAQAAAAAAAAAAwIPw5E8AAAAAADzIxcLPmTNnav78+erZs6fVIQEAAAAAAAAAAMDDeO2TP7/88kuFhYVp2bJlVocCwAMxRwBA4TF3AoD1LhZ+vvfee/roo4/Up08fq0MCAAAAAAAAAACAB/LaJ38aY6wOAYAHY44AgMJj7gQAaxljNHz4cM2aNUvx8fHq1auX1SEBAAAAAAAAAADAQ3ntkz/vv/9+paWlqXv37laHooyMDLVu3drqMCxRGtdelvu3JGRkZOjUqVNWh1HimCPgbsx33is5OdnqELwGcyfKAuZzeCpjjGJjYzVr1izFxcVR+AkAAAAAAAAAAIB8eW3xpyeZO3eujh07ZnUYliiNay/L/VsSDh48qBo1auiBBx7QggULlJ6ebnVIPo8c9g3Md97rscceU8OGDfXaa69pz549VocDFzEeUFKYz+GJjDF69tlnNXv2bMXHx+uhhx6yOiQAAAAAAAAAAAB4OK8s/ly3bp0iIiJks9n07rvvSpJmzpypChUqKDg4WEuXLtV9992n0NBQ1a5dW/Pnz3d+9u2335bdblf16tU1ZMgQXXPNNbLb7WrdurU2bNjgbBcbG6uAgADVrFnTue3pp59WhQoVZLPZdPz4cUnSiBEjNGrUKO3du1c2m00NGzaUJH311VcKDQ3VxIkTS6NLXGaM0Ztvvqkbb7xRgYGBCg8PV8+ePbVz505nm+Jce1nvX2/hcDi0YsUK9evXT1WqVFG/fv20fPlyORwOq0NzC+YISMx3+J/s7Gzt3btX48ePV6NGjXTbbbdpxowZPBH0Msyd8FTM5/B1xhg988wzmjNnjuLi4tSzZ0+rQwIAAAAAAAAAAIA3MKUsLi7OuOO0Bw8eNJLMO++849z28ssvG0lm1apVJi0tzRw7dsy0bdvWVKhQwWRmZjrbDR482FSoUMH88ssv5vz582bHjh2mZcuWpmLFiubAgQPOdv379zc1atTIdd6pU6caSSYlJcW5rXfv3qZBgwa52n3xxRemYsWKZvz48cW+VmOMkWTi4uKKfZyxY8eagIAA8/HHH5vU1FSTlJRkbrvtNlO1alVz5MgRZ7viXLs39q8xxvTp08f06dPHbcfzVLt27TKScv35+/sbSSYkJMQMGDDAfP755yYrKyvX57ytf8raHFEa3DV/lxbmO2t5Ur507Ngx15xns9mMv7+/sdls5o477jAzZswwx44dy/UZT4q/NDF3ejZ33Q96G+Zz3+Ft95OlIScnxwwdOtQEBASYJUuWWB0OAAAAAAAAAAAAvEe8Vz75syCtW7dWaGioqlWrppiYGJ07d04HDhzI1cbPz8/59KCbbrpJM2fO1JkzZzRv3jy3xHD//ffr9OnTevXVV91yPHfIyMjQm2++qV69emnAgAEKCwtTs2bNNGvWLB0/flyzZ89227nKYv96s4tP/Dx79qzi4+PVo0cPXXPNNRo+fLjWrVtncXTuxxzh+5jvkB9jjBwOh4wx2rx5s0aNGqWaNWuqU6dO+uijj3T27FmrQ/RIzJ2wAvM5fFlOTo4GDRqkf/zjH1q8eLEefPBBq0MCAAAAAAAAAACAF/GzOoCSFhAQIEkFvs66RYsWCg4OzvX6SF+zY8cOnT17Vi1atMi1vWXLlgoICMj1Wkt385b+PXLkiBISEqwOo0QdPnw43/2ZmZmSpJSUFM2aNUtvv/226tevL7vdrjp16pRGiKWKOcI3Md95Dk+YU1NTU6+6Lzs72/m/165dq8TERA0ePFi33367pD/nBn9//xKP0dswd6K0MJ/DV2VnZ2vgwIFauHChFi9erG7dulkdEgAAAAAAAAAAALyMzxd/FkZgYKBSUlKsDqPEXCx+CQkJuWJfpUqVdObMmRI9vzf079atWxUVFWV1GB7jYiHovn37JEnJyclavXq1OnXqZGVYlvGGHMafmO88hyfMqeHh4S61u1gIev78ef3www+SpFdffVV/+9vfFBgYWGLx+TrGA4qD+Ry+yOFwqF+/fvryyy+1dOlS3XvvvVaHBAAAAAAAAAAAAC/kk699LwqHw6HU1FTVrl3b6lBKTKVKlSQpzx/JS/ravaV/u3TpImOMT//t2rXLpb64+KS7a6+9VrGxsbr77rt19913l9nCT2/JYfyJ+c5zWD3nGWPUvHnzAuMsX768ypUrJ39/f3Xr1k0jR46UJL3++usUfhYD4wHFxXwOX5OZmamoqCitWLFCy5Yto/ATAAAAAAAAAAAARUbx5/8vMTFRxhi1atXKuc3Pz6/A15l6k6ZNmyokJESbNm3KtX3Dhg3KzMx0vuJWcv+1l4X+9QUXX+MbFhamxx9/XN9//70OHTqkt956y1l8UVaRw96F+Q6usNlszqLPdu3aad68eTpx4oSWL1+e6/tD0TEeUFzM5/Al6enp6t69u9asWaNvvvmmzP5HVQAAAAAAAAAAAHCPMlv8mZOTo1OnTikrK0tJSUkaMWKEIiIiNHDgQGebhg0b6uTJk1qyZIkcDodSUlK0f//+K45VuXJlJScn6/fff9eZM2fkcDi0YsUKhYaGauLEiaV4Vfmz2+0aNWqUFi9erE8++USnT5/Wtm3bNHToUF1zzTUaPHiws21xrl0qm/3rrfz9/WWz2VShQgVFRUXp888/1/Hjx/XBBx+oTZs2stlsVodoCXLYuzHf4WpsNptz3mvZsqXeeOMNJScna/Xq1Xr00UdVsWJFq0P0aowHuBvzOXzFuXPn1KNHD23cuFErV65UZGSk1SEBAAAAAAAAAADAy3ll8ee7776rli1bSpJGjx6tBx98UDNnztT06dMlSTfffLP27dunOXPmaNSoUZKkrl27avfu3c5jnD9/Xs2aNVNQUJDatm2rxo0ba82aNble7Tps2DB17NhRDz/8sK6//nq99tprCgoKkiRFRkbq4MGDkqShQ4eqevXquummm9StWzedPHmyVPqhKP76179q0qRJGj9+vKpWrar27durbt26SkxMVIUKFZztinvtZbV/vU1AQIB69uypzz77TCdOnNDHH3+s7t27y8/Pz+rQioU5AhLzHfLWpEkTTZo0Sfv379eGDRs0fPhw1ahRw+qwPAJzJzwV8zm8XVpamu655x5t27ZNiYmJuuOOO6wOCQAAAAAAAAAAAD7AZowxpXnC+Ph4RUdHq5RPm8uQIUOUkJCgEydOWBZDYdlsNsXFxSkqKsrqUArkjf0rSX379pUkJSQkWBxJydq7d69iY2P18MMPq2fPngoJCXHpc2WlfyTvzeGS5gnzt6chV67Ok/LlYhHWww8/rBtuuMGlz3hS/N6C8VDyvOl+0NuQv6WjLN1PXnTq1Cl17dpVBw4c0LfffqsmTZpYHRIAAAAAAAAAAAB8Q4J3P96vGLKzs60OwafRv56rQYMGWr58udVheDxyGK4iVzzf+++/b3UIZQbjAd6M/IW7HT16VPfcc49Onz6tdevWqUGDBlaHBAAAAAAAAAAAAB9SZos/AQAAAAAoCQcOHNA999yjnJwcrV27VhEREVaHBAAAAAAAAAAAAB9TzuoAStuYMWM0b948paWlqV69elq4cKHVIfkU+hfejhyGq8gV4H8YD/Bm5C/cbd++ferYsaP8/PyUmJhI4ScAAAAAAAAAAABKRJkr/pw0aZIuXLggY4z++9//qk+fPlaH5FPoX3g7chiuIleA/2E8wJuRv3CnHTt2qG3btqpcubK+++471apVy+qQAAAAAAAAAAAA4KPKXPEnAAAAAADutnHjRrVv316NGjXSqlWrVLVqVatDAgAAAAAAAAAAgA+j+BMAAAAAgGJITExU586dFRkZqRUrVig0NNTqkAAAAAAAAAAAAODjKP4EAAAAAKCIli1bpvvuu08PPPCAFi9erKCgIKtDAgAAAAAAAAAAQBlA8ScAAAAAAEXw6aefqlevXho4cKA++eQT+fv7Wx0SAAAAAAAAAAAAygiKPwEAAAAAKKR33nlHAwYM0PPPP6/3339f5crxz2sAAAAAAAAAAACUHj+rTmyz2aw6tdeKjo5WdHS01WH4tD59+lgdgkdbuHAhYxfkAMoU8h2ehvtBeDtfud8eO3asJkyYoNdff10vvPCC1eEAAAAAAAAAAACgDLKs+DMuLs6qU/uM6dOnS5JGjhxpcSS+4WJ/4upatWpFvuEK0dHRGjFihCIjI60OBR7kxx9/1IwZM6wOo9i4X4Gn434Q3sQX7rezs7P1zDPPaM6cOfrggw/05JNPWh0SAAAAAAAAAAAAyijLij+joqKsOrXPSEhIkERfusvF/sTV1a5dm3zDFaKjoxUZGUlu4Aq+UPxJXsPTcT8Ib+Lt99uZmZl65JFHtHTpUi1YsMBnnmIKAAAAAAAAAAAA72RZ8ScAAAAAAN7g7Nmz6t27t3766SetXLlS7dq1szokAAAAAAAAAAAAlHEUfwIAAAAAcBVHjx5Vt27dlJycrDVr1qh58+ZWhwQAAAAAAAAAAABQ/AkAAAAAQF5+//13denSRQ6HQ99//70aNmxodUgAAAAAAAAAAACAJKmc1QEAAAAAAOBpduzYoTZt2igwMFDr1q2j8BMAAAAAAAAAAAAeheJPAAAAAAAukZiYqDZt2uj666/XunXrdO2111odEgAAAAAAAAAAAJCLVxZ/DhkyRDabzfk3YMCAK9p8++23eumll5STk6OHHnpIERERstvtqlWrlh588EElJSUV+fw5OTmaPn26WrdufcW+zz//XFOmTFF2dnau7UuWLMkVc9WqVYt8fneiL1FWeVpewzOQF0D+GCPwFiWRqxMmTMh1D3rxr2nTps425KpviIuLU9euXXXvvffqyy+/VGhoqNUhAQAAAAAAAAAAAFfwyuJPSapcubJWrFihXbt2ae7cubn2/fWvf9Xbb7+tMWPGKCcnR99//70+/fRTnTx5UuvWrVNGRobatWun5OTkQp939+7dateunZ577jmlp6dfsb9Hjx6y2+3q3LmzUlNTndsffPBBHTp0SGvXrlW3bt0Kf8EliL5EWeOJeQ3rkRdA/hgj8BYlmasFIVe931tvvaV+/fpp8ODBmj9/vgIDA60OCQAAAAAAAAAAAMiT1xZ/BgUFqWvXrmrcuPXeCncAACAASURBVHGuH+Ref/11LViwQPHx8apYsaIkKTIyUm3atFFwcLDq1auniRMnKi0tTf/v//2/Qp1z69atevHFFzV06FA1b978qu2GDx+uW265Rd26dVNWVpYkyWazqVatWmrbtq0aNWpU+AsuQfQlyhJPzWtYi7wA8scYgbcoyVyVpI8//ljGmFx/27dvz9WGXPVOxhiNHj1aI0eO1KRJk/TWW2+pXDmv/ecyAAAAAAAAAAAAygCf+jVrz549evXVV/W3v/1NdrtdkuTn56dly5blale/fn1J0t69ewt1/FtuuUWLFi1S//79C3wCzLhx47RlyxbNmDGjUOfwFPQlfBF5jbyQF0D+GCPwFiWdq4VBrnqXCxcuqF+/fnrrrbf06aefavTo0VaHBAAAAAAAAAAAABTIp4o/3377bRlj1KNHj3zbZWRkSJJCQ0NLLJbw8HC1b99eM2bMkDGmxM5TUuhL+CLyGnkhL4D8MUbgLchVFMWpU6d077336quvvtLXX3+tmJgYq0MCAAAAAAAAAAAAXOJTxZ/Lly/X9ddfr+Dg4Hzb/fTTT5KkNm3alGg8t956q/744w9t3bq1RM9TEuhL+CLyGnkhL4D8MUbgLUojV1966SWFh4crICBA9erVU8+ePbVx48Y825Krni85OVkdO3bUnj17lJiYqPbt21sdEgAAAAAAAAAAAOAynyn+PHfunP773/+qQYMGV21z9OhRLViwQMOHD1dkZGSBTwUqrkaNGkmStm3bVqLncTf6Er6IvEZeyAsgf4wReIvSyNXHHntMn3/+uQ4ePKizZ89q/vz5OnDggNq3b68dO3Zc0Z5c9Wxbt25Vy5YtZYzRTz/9pFtuucXqkAAAAAAAAAAAAIBC8bM6AHc5duyYjDH5PuknMjJS586dU1RUlCZMmCB/f/8SjeliLEePHi3R87gbfQlfRF4jL+QFkD/GCLxFaeRqnTp1VKdOHef/b9WqlebNm6fmzZvrvffe08yZM3O1J1c911dffaWoqCjdcccdWrRokcLCwqwOCQAAAAAAAAAAACg0nyn+PH/+vCQpMDDwqm2qV6+uuXPnqkmTJqUSU1BQUK7YvAV9CV9EXiMv5AWQP8YIvIVVudqsWTOVL19ev/322xX7yFXP9OGHH2rYsGHq37+/PvjgAwUEBFgdEgAAAAAAAAAAAFAkPvPa94s/rmZnZ1+1TbVq1VSpUqXSCkmZmZmS/hebt6Av4YvIa+SFvADyxxiBt7AqV3NycpSTk5Nn0Sm56lmMMRo3bpyeeuopjRkzRvPmzaPwEwAAAAAAAAAAAF7NZ578Wb16ddlsNqWlpV21zbJly0oxIjljqVGjRqmet7joS/gi8hp5IS+A/DFG4C1KI1e7dOmir7/+Ote2jRs3yhijyMjIK9qTq57j/PnzGjhwoJYsWaKPP/5Y/fv3tzokAAAAAAAAAAAAoNh85smfwcHBql+/vg4dOpTn/j179qhGjRqKjo6+Yl9MTIxq1Kih//znP26N6WIszZo1c+txSxp9CV9EXiMv5AWQP8YIvEVp5Ooff/yhBQsWKDU1VQ6HQz/++KMGDRqkiIgIDR069Ir25KpnOHLkiNq1a6dvvvlGK1eupPATAAAAAAAAAAAAPsNnij8l6f7779eOHTuUkZFxxT5jzFU/l5mZqWPHjmnp0qX5Hn/9+vVq06aNrr32Wm3YsEFbt27VNddco7vuuktr1669ov3GjRtVq1Yt3XzzzYW/GIvRl/BF5DXyQl4A+WOMwFuUdK527dpVr7zyimrXrq3g4GBFRUXprrvu0vr161WlSpUr2pOr1tu+fbtatWqlU6dO6d///rfatWtndUgAAAAAAAAAAACA2/jMa98l6dlnn9XMmTO1aNEiDRgwINe+Ro0a6ejRo3l+buHCherQoYOuu+66fI/fqlUrrVu3zqVYTpw4oVWrVmnChAmy2WyuXYAHoS/hi8hr5IW8APLHGIG3KOlcnTZtmqZNm+ZSLOSq9b799lv16dNHTZo00ZIlS1StWjWrQwIAAAAAAAAAAADcymuf/JmRkaGvv/5au3fvVmZmpiSpYcOGGj9+vMaPH6+zZ8+6dJzs7GwtWbJEZ86cUUxMjNviGzdunJo3b67Y2FhJfz5tKDk5WevWrdOePXvcdh53oC9RVnhyXsM65AWQP8YIvAW5iotmzZql++67Tz169NCaNWso/AQAAAAAAAAAAIBP8triz5MnT6pr165q3Lix/vKXvzi3v/TSS+rbt69iYmKUlpZW4HESExO1aNEirVixQsHBwW6J7c0339SWLVv05Zdfyt/fX5K0dOlS1apVS23bttXy5cvdch53oS9RlnhqXsNa5AWQP8YIvAW5WrZlZWXp2Wef1bBhw/TXv/5V//znPxUQEGB1WAAAAAAAAAAAAECJsBljTGmeMD4+XtHR0Srp065cuVKrV6/W66+/XqLnudzSpUv1yy+/6IUXXlD58uVL9Fx9+/aVJCUkJJToecpCX0ql15/eytf6p6zkdWmw2WyKi4tTVFSU1aEUG3nhPqW13pcUb4+/pDBGPI+vrc/uQq56ppLM1zNnzqhfv3769ttvNXfuXPXr18/t5wAAAAAAAAAAAAA8SILPFn+WBfzY7170Z/7oH1yNLxV/wn28fb339vhRdrA+w5uUVL7u3btX3bt3V1pampYuXaoWLVq49fgAAAAAAAAAAACAB0rw2te+AwAAAADKtu+//16RkZGy2+1av349hZ8AAAAAAAAAAAAoMyj+BAAAAAB4nTlz5qhz587q0KGD1q1bpzp16lgdEgAAAAAAAAAAAFBqKP4EAAAAAHiN7Oxsvfjiixo8eLCee+45xcXFKTg42OqwAAAAAAAAAAAAgFLlZ3UAAAAAAAC44uTJk4qJidEPP/yg+Ph49enTx+qQAAAAAAAAAAAAAEtYVvwZHx9v1al9xqFDhyTRl+5y6NAh1a5d2+owPNqhQ4fIN+Tpxx9/tDoEeBhfyQnmPHg67gfhTYp7v719+3b17NlTmZmZ+v7773Xbbbe5MToAAAAAAAAAAADAu1hW/BkdHW3VqX0Ofek+PDkof+vXryffkKcZM2ZoxowZVocBuB1zHrwFuQpvUdT77S+++EIDBgxQ06ZNtXDhQtWsWdPNkQEAAAAAAAAAAADexWaMMVYHAQAAAADA5Ywx+vvf/64xY8Zo0KBBeueddxQQEGB1WAAAAAAAAAAAAIDVEix78icAAAAAAFdz5swZPfbYY1q+fLlmzZqlJ5980uqQAAAAAAAAAAAAAI9B8ScAAAAAwKPs3r1bPXv2VEpKilauXKn27dtbHRIAAAAAAAAAAADgUcpZHQAAAAAAABetWLFCd9xxh+x2uzZt2kThJwAAAAAAAAAAAJAHij8BAAAAAJYzxmjixIl64IEH1LNnT/3www+KiIiwOiwAAAAAAAAAAADAI/HadwAAAACApdLS0vToo49qxYoVmj59umJjY60OCQAAAAAAAAAAAPBoFH8CAAAAACyzc+dO9erVSydOnNBXX32lTp06WR0SAAAAAAAAAAAA4PF47TsAAAAAwBKffvqpWrRooSpVqmjLli0UfgIAAAAAAAAAAAAuovgTAAAAAFCqsrKy9OKLL6p///7q37+/Vq9erWuuucbqsAAAAAAAAAAAAACvwWvfAQAAAACl5o8//lBUVJSSkpK0YMECRUdHWx0SAAAAAAAAAAAA4HUo/gQAAAAAlIq1a9cqOjpaoaGh+vHHH9W0aVOrQwIAAAAAAAAAAAC8Eq99BwAAAACUKGOMpkyZos6dO+uuu+7Spk2bKPwEAAAAAAAAAAAAioEnfwIAAAAASsyxY8f02GOPadWqVZo8ebJGjRolm81mdVgAAAAAAAAAAACAV6P4EwAAAABQIhITE9W/f3/5+flpzZo1uuuuu6wOCQAAAAAAAAAAAPAJvPYdAAAAAOBWWVlZGjt2rO6++25FRkZq69atFH4CAAAAAAAAAAAAbsSTPwEAAAAAbrN792498sgj2rp1q9555x0NHTrU6pAAAAAAAAAAAAAAn8OTPwEAAAAAbvHRRx/ptttuU3p6utavX0/hJwAAAAAAAAAAAFBCKP4EAAAAABTL4cOH1a1bN/3lL39RbGysNm/erFtuucXqsAAAAAAAAAAAAACfxWvfAQAAAABFlpCQoGHDhikkJESrV69Wu3btrA4JAAAAAAAAAAAA8Hk8+RMAAAAAUGgHDhzQfffdp5iYGPXr10/btm2j8BMAAAAAAAAAAAAoJTz5EwAAAADgMmOM5syZo+eff141atTQqlWr1KFDB6vDAgAAAAAAAAAAAMoUnvwJAAAAAHBJUlKS2rRpo6efflrDhg3Ttm3bKPwEAAAAAAAAAAAALEDxJwAAAAAgX2fPntWoUaN0++23yxijTZs26fXXX5fdbrc6NAAAAAAAAAAAAKBM4rXvAAAAAICrWrx4sYYPH6709HTNnDlTTzzxhMqV478jBAAAAAAAAAAAAKxkM8aYUjmRzVYapwHcJi4uTlFRUVaH4TH69u2rhQsXWh0GAC9TSrcZbhcfH6/o6GirwwAAn9OnTx8lJCRYHQYAAAAAAAAAAADg7RJK9cmfI0aMUGRkZGmeEigSCn7y1qpVK40cOdLqMAB4gR9//FEzZsywOoxii4uLszoEALCcMcYt/zHf9OnT3RANAAAAAAAAAAAAAKmUX/seGRnJkxThFSj+zFvt2rUZwwBc5gvFn8x5AOA+PPETAAAAAAAAAAAAcJ9yVgcAAAAAAAAAAAAAAAAAAAAA11H8CQAAAAAAAAAAAAAAAAAA4EUo/gQAAAAAAAAAAAAAAAAAAPAiFH8CAAAAAAAAAAAAAAAAAAB4EYo/AQAAAAAAAAAAAAAAAAAAvIhHFn8uWrRI9evXl81my/Xn5+enqlWr6u6779bixYsti2/QoEGqWLGibDabtmzZcsX+nJwcTZ8+Xa1bty7yOdavX68bb7xR5cqVk81mU40aNTRhwoTihO12l39PNWvW1IABA6wOCz7oyy+/VFhYmJYtW2ZpHNOmTVP16tVls9k0a9asEjnH5MmTFRYWdtX5xRM4HA6NHTtW9evXV0BAgGrVqqXnn39eGRkZRT7m1q1bFRMTo3r16ikwMFBVq1bVLbfcUqx5r6Tzxuo50BtyBfBWV7vX85T1SCqZuViSdu3apWeffVZNmjRRxYoV5efnp7CwMDVu3Fj333+/fvzxRzddgee72r9JLv2rW7eu1WHm4g25CwAAAAAAAAAAAMA9PLL4s3fv3tq3b58aNGigsLAwGWNkjFFKSori4uL0xx9/qHfv3oqLi7Mkvg8//FBz5szJc9/u3bvVrl07Pffcc0pPTy/yOVq1aqVff/1V9957r6Q/f4h/5ZVXiny8knD593TkyBF98sknVocFH2SMsToESdLzzz+vf//73yV6jpdeekkffPBBiZ6juEaMGKGpU6dq0qRJOnHihP71r39pzpw5GjRoUJGOt23bNrVu3Vo1a9bUmjVrlJaWpn//+9/q2rWrEhMTixxnSeeN1XOgN+QK4K2udq/nKeuR5P65WJLmzp2rZs2aKSkpSW+++aYOHjyoc+fO6eeff9Zrr72m1NRUbdu2zY1X4dmu9m+SrKwspaen6+jRowoODrY6zFy8IXcBAAAAAAAAAAAAuIdHFn9eTXh4uDp37qy33npLkhQfH29xRLlt3bpVL774ooYOHarmzZtbHY7bZWRkFOtppsClCpNP999/v9LS0tS9e/cSjgoF2bdvn2bNmqVHH31UMTExqlixojp06KDY2Fh9+umn+vXXXwt9zGnTpqlSpUqaMWOG6tatK7vdrsaNG+u1115TUFBQrrbkDXwZ66zn85R5pSTm4vXr12vw4MFq27atVq1apS5duqhSpUoKDAxU/fr1FR0drbFjxyozM9PlY/pqTpcvX15BQUGqXr26GjdubHU4LvGU3AUAAAAAAAAAAADgPl5V/HnRxdcrpqamWhaDzWa7Ytstt9yiRYsWqX///goMDLQgqpI1d+5cHTt2zOow4COszCdjjBISEjR79mxLzu/NNm7cqJycHN155525tnft2lWS9PXXXxf6mCdOnFBaWppOnjyZa3tAQMAVr6clb+DL3JXf5Kp75HWv525F/a5KYi6eMGGCsrOzNXnyZPn5+eXZpkuXLnrmmWdcPmZZyOklS5ZYHcIVPDl3AQAAAAAAAAAAALiPVxZ/JiUlSZLat2/v3Pb3v/9dwcHBqlixoo4dO6ZRo0apVq1a2rVrl7KzszV27FhFREQoKChIN998c65Xxhe03xijqVOn6vrrr1dgYKDCwsL0f//3f0WO/6uvvlJoaKgmTpxY6M/OnDlTFSpUUHBwsJYuXar77rtPoaGhql27tubPn+9s9/bbb8tut6t69eoaMmSIrrnmGtntdrVu3VobNmxwtouNjVVAQIBq1qzp3Pb000+rQoUKstlsOn78uKQ/Xy06atQo7d27VzabTQ0bNizStX///fe66aabFBYWJrvdrmbNmjkLFAYNGiSbzSabzaYGDRro559/liQ9/vjjCg4OVlhYmD7//HNJ+X9n+eUCStd3332nO+64Q8HBwQoNDVWzZs10+vTpPPPpat/b3LlzFRERIZvNpnfffVeS6+NA+jNXJk2apOuvv15BQUGqWrWq6tWrp0mTJikqKsot12mM0Ztvvqkbb7xRgYGBCg8PV8+ePbVz584itbvc0aNHVbduXfn5+TkLe1wdu67OBa4qV+7PZePyJ3I2atRIknI9bc7Vua5ly5Y6d+6cOnXqpB9++OGq7Xwhb8pSrpRVH3/8sVq0aCG73a4KFSqobt26eu211yTlvwZebZ115R7GlVx1JaeuNp7atm3r8vrsqvyuqzBjtaA+L8yYK+heb926dR4zr7h7Ls7MzNSqVatUpUoV3XHHHS7HQU7nRu4CAAAAAAAAAAAAKFWmlEgycXFxhfpMgwYNTFhYmPP/p6enmxUrVpjrrrvO3Hvvvebs2bO52r/88stGkhk+fLh55513TK9evcyvv/5qnn/+eRMYGGgWLlxoTp06ZcaMGWPKlStnNm7caIwxBe5/+eWXjc1mM2+88YY5deqUSU9PN++9956RZH7++ec8Y7/zzjvNLbfckue+L774wlSsWNGMHz++wD7o0qWLkWROnTp1xXWuWrXKpKWlmWPHjpm2bduaChUqmMzMTGe7wYMHmwoVKphffvnFnD9/3uzYscO0bNnSVKxY0Rw4cMDZrn///qZGjRq5zjt16lQjyaSkpDi39e7d2zRo0OCKGC//nvKTkJBgxo0bZ06ePGlOnDhhWrVqZapUqZLrHOXLlzd//PFHrs/169fPfP75587/78p3llcuuKoo+err+vTpY/r06eNy+7Nnz5rQ0FAzZcoUk5GRYY4cOWJ69erlzKm88ulq39vBgweNJPPOO+9c0bagcTBx4kRTvnx5s3TpUpOenm42b95satSoYTp06FCkfti9e7eRZN5//33ntrFjx5qAgADz8ccfm9TUVJOUlGRuu+02U7VqVXPkyJFCt5s/f36u+SUzM9P07t3bLF26NFcsro5dV+cCVyQlJRlJ5tVXX821PSsry0gyDz30kHObq3Ndenq6adGihZFkJJmbbrrJTJkyxZw4ceKKtp6YN4WZA8tSrsTFxZlSvM1wu6LEP336dCPJTJ482Zw4ccKcPHnSfPDBB6Z///7GGNfWwMvzu6D1ztVcdTWnrjaeXF2fXeXqOl7QWC2ozwtz3a7c63nKeuTuufi3334zkkyrVq0KFUdZyem85vnhw4ebbdu2XdEn5G7+Cns/CQAAAAAAAAAAAOCq4j2++PNiMdClf82aNTP//Oc/zYULF3K1v/gDZkZGhnNbRkaGCQ4ONjExMc5t6enpJjAw0AwbNqzA/enp6SY4ONjcc889uc51ecHN5fIr/iyM/Io/L73Oiz/y7tmzx7lt8ODBV/xQvXHjRiPJ/O1vf3NuK83iz8tNmjTJSDLHjh0zxhjz7bffGklmwoQJzjZpaWmmUaNGJisryxhT8HdqTN59VBgUf16psD/Wb9++3UgyX3zxRZ778yviu/x7y69goaBx0LJlS3PHHXfkOt5TTz1lypUrd8Uc4orLiz/T09NNSEhIrnw0xpiffvrJSHIW27jazpjc84vD4TAPP/ywWbFixRWxFKagz5W5wFVdu3Y1lStXNqtWrTIZGRnm8OHDJj4+3thsNvPAAw8U+njG/Fm0+NZbb5kbbrjBOddXr17dJCYm5mrniXnj6hxY1nKlrBV/ZmZmmkqVKpmOHTvm2p6VlWVmzJiR52cuXwMvz29X1jtXcrUwOXW18eTK+uyqoq7jl4/Vgvq8MGPO1Xs9T1qP3DkXb9q0yUgyd999d6HjuJSv5vTV/k2SX/EnuZs3ij8BAAAAAAAAAAAAt4n3+Ne+h4WFyRgjY4wcDocOHTqkkSNHKjY2VjfffLPzdbVXs2vXLqWnp6tp06bObUFBQapZs6Z27txZ4P49e/YoPT1dnTt3LrFrdIeAgABJksPhyLddixYtFBwcXOCrg0uLv7+/pD9fJylJnTp1UuPGjfWPf/xDxhhJ0oIFCxQTE6Py5ctLKvg7hWeoX7++qlevrgEDBmjcuHH6/fffS/yceY2D8+fPO3PpouzsbPn7+ztzqjh27Nihs2fPqkWLFrm2t2zZUgEBAc7XZbva7vI4+/Xrp+rVqztf4e0uxZkLFixYoL59++rRRx9V5cqVddddd+mzzz6TMUZVqlQpUjz+/v6KjY3Vr7/+qvXr16tnz546duyY+vbtq1OnThXpmK4qrbwpi7lSliQlJSk1NVVdunTJtb18+fIaPnx4np+5fA28nCvrnSu5WpScupwr67OrirqOXz5WC+pzV6+7JO71SmNecedcHBISIklKT08vdByX8uWcvvTfJMaYq47rvJC7AAAAAAAAAAAAAEqCxxd/XsrPz0+1atXS448/rmnTpmnXrl2aPHlyvp85d+6cJOmVV16RzWZz/u3fv1/p6ekF7j906JAkqVq1aiV7caUoMDBQKSkplpx7+fLl6tChg6pVq6bAwEC98MILufbbbDYNGTJE+/bt06pVqyRJH330kZ544glnm4K+M3iGoKAgrV69Wm3atNHEiRNVv359xcTEKCMjo1Tj6NatmzZv3qylS5cqIyNDmzZt0pIlS/TAAw+4pWAhNTVV0v8KZy5VqVIlnTlzplDtLvXMM89o9+7dmjVrln755Zdix3q5os4FYWFhmjVrlg4dOqT09HTt3btXb7zxhiTp2muvLXZcd955pz777DMNHTpUKSkpWrNmTbGPWVglkTdlMVfKktOnT0v68zu6moLWwMu5st65kqtFyanLubI+u8pd63hBfe7qdZfWvZ675xV3zsV169aV3W7Xb7/9VqjPleWcnjFjRq4i1sIo67kLAAAAAAAAAAAAwD28qvjzUs2aNZOkAotcLv4YOn369FxP6zHG6Mcffyxwv91ulyRduHChBK+m9DgcDqWmpqp27dqlcr61a9dq+vTpkqQDBw7ooYceUs2aNbVhwwalpaVpypQpV3xm4MCBstvt+vDDD7Vr1y6Fhobquuuuc+4v6DuD52jSpImWLVum5ORkjR49WnFxcZo2bVqpxjBu3Dh16tRJAwcOVGhoqHr16qWoqCjNmTPHLce/WLiRV6HJpWPN1XaXioqK0jfffKNKlSrp0UcfVVZWlltiltw/F2zcuFGS1LFjx0J/tnfv3nle2yOPPCKp+E+iKwp35c2lcyC54tsuFttd7Ynkrq6Bl3JlvXMlV4uSU3kpaH12lbvW8YL63NXrLq17vZJej6Siz8WBgYHq0qWLjh8/rh9++OGq7U6ePKlBgwZJIqeLg9wFAAAAAAAAAAAA4A5eW/y5efNmSdL111+fb7s6derIbrdry5YtRdrftGlTlStXTt99913xAvYQiYmJMsaoVatWzm1+fn4Fvi6+qDZv3qwKFSpIkrZt2yaHw6Fhw4apfv36stvtstlsV3wmPDxc0dHRWrJkiaZNm6Ynn3wy1/6CvjN4huTkZGdxdrVq1TR58mTddtttJfJUwvzs2LFDe/fuVUpKihwOhw4cOKCZM2cqPDzcLcdv2rSpQkJCtGnTplzbN2zYoMzMTN1+++2Fanepjh07qmrVqpo9e7Y2b96sCRMm5NpfnLGb11xQHHPmzFG9evXUvn37Qn/2woULeebFrl27JEk333xzseMrLHflzaVzILni2+rWravKlStr5cqVee53dQ28lCvrnSu5WpScyktB67Or3LWOF9TnhRlzpXGvV9LrkVS8uXjcuHEKDAzUc889d9WndG/fvl1+fn6SyOmLDh8+rMcff7xQnyF3AQAAAAAAAAAAALiDVxR/ZmRkKCcnR8YYJScna968eXrllVdUtWpVjRw5Mt/P2u12Pf7445o/f75mzpyp06dPKzs7W4cOHdLhw4cL3F+tWjX17t1bCxcu1Ny5c3X69GklJSVp9uzZRb6eFStWKDQ0VBMnTizyMVyVk5OjU6dOKSsrS0lJSRoxYoQiIiI0cOBAZ5uGDRvq5MmTWrJkiRwOh1JSUrR///4rjlW5cmUlJyfr999/15kzZ/ItJHI4HDp69KgSExOdhU8RERGSpG+//Vbnz5/X7t27tWHDhjw/P3ToUF24cEFffPGFunfvnmtfQd8ZPENycrKGDBminTt3KjMzUz///LP279/vLCArTD4VxzPPPKOIiAidPXu2RI5vt9s1atSo/6+9ew+ysrzvAP47sssuC64gonIPIho1JDgmLSBo0k7GCyMqYXeptRPTpFXMBLykVUjiBcWaxiqlQDpJGTNqG3ZXrIQJRidNLcW6lo7jJaZRpCGCjGBALip0d9mnf2TYZMuy7Ibdc/Y9+/nM7B+859nz/M7D9/29vgbJ2gAAG0hJREFU78w+85544okn4rHHHot9+/bFq6++GnPnzo3hw4fH9ddf36Vx7Zk5c2Zcd911sXjx4taN7xGdP3cjOtcLOuv3fu/34pe//GU0NzfHli1b4qtf/Wr8+Mc/jpUrV0b//v1bx3Wl11199dVRV1cXe/bsib1798aaNWvi9ttvjyuvvLLN5s+s5Ka9HtgXs9KXlJWVxcKFC2P9+vUxb968ePvtt6OlpSX2798fP/vZzzp1Dfz/+e7Xr98xr3edyerxZOr/6+j63FnddR0/1pp39nP3xL1ee7r7etTdvXjSpEnxj//4j/HTn/40pk+fHuvWrYu9e/dGU1NT/OIXv4jvfve78cUvfjFKS0sjonP3dcWc6ZRSHDhwIFavXh2VlZWd/r0I2QUAAAAAAAC6ScqTiEi1tbWdGvvEE0+k8ePHp4g44qesrCxNmDAh3Xjjjemtt95q/Z1vfvObacCAASki0ujRo9Ojjz7a+tr//u//pttuuy2NGTMmlZSUpGHDhqXPfe5z6bXXXuvU6/v3709f+tKX0tChQ9OgQYPStGnT0h133JEiIo0aNSq9/PLLKaWUnn/++XThhRem4cOHt9Z7+umnp6lTp6Z/+7d/a61n3bp16cQTT0z33nvvUdegoaEhnXfeeemEE05ofZ/Fixen5cuXp4qKihQRacKECWnz5s3pO9/5TqqsrEwRkcaOHZveeOONlFJK119/fSotLU0jR45MJSUlqbKyMl111VVp8+bNbebatWtX+sxnPpPKy8vTuHHj0le+8pX0F3/xFyki0plnntm6zi+++GIaO3ZsGjBgQJo2bVr69re/fdT/p9/+eeKJJ1rnuu2229LJJ5+cBg8enKqqqtKyZctSRKTx48e3+f9MKaXzzz8/LViwoN316ej/rKMsdFZX8tpXzJ49O82ePbvT47ds2ZKmTp2ahgwZkvr165dGjBiRvva1r6Xm5uaU0pF5uuWWW9r9f/u7v/u7dPrpp6eISBUVFWnmzJldOg9+8pOfpKFDh7bJZGlpaTrnnHPS6tWru7QGf/M3f5NOO+20FBFp4MCBadasWSmllFpaWtK3vvWtNGHChFRaWpqGDBmSrr766vT666+3+f3OjFu9enUaMmRIioj0kY98JO3cuTPt27cvjR49OkVEGjRoUHrkkUdSSp0/dzvbCzrrs5/9bBo8eHAqKSlJQ4YMSTNmzEgbN248Ylxnel1KKT3zzDOppqYmjR8/PpWVlaX+/funs88+O911113p4MGDbcb2ptx0dK06Wg/sS1mpra1NebzN6Ha/a/3Lli1LEydOTOXl5am8vDydf/75afny5SmlY18D/3++33nnnWPeo3S2x3UmU529fnZ0fe6sjj5XV87VY615Z8+5ztzr9abrUUrd34sPe+utt9JXv/rVNHHixDRo0KDUr1+/NHjw4HT++eenL37xi+m5555rHVvsme5sn//617+eUkqy2wldvZ8EAAAAAAAAjqoul1JKndsmenxyuVzU1tZGdXV1PqYjIm644Yaor6+PXbt2FbqU38mMGTNi2bJlMW7cuLzPLa9HqqqqioiI+vr6AlfSNStWrIhNmzbFQw891HqssbExbr/99lixYkW89957MWDAgAJW2POy3gsKoa/mpjuzUldXFzU1NZGn24xul5X6C5HVQl6fs6yv9pWukunepzv/T7J6PwkAAAAAAAC9UH1JoSugZx06dKjQJXRaU1NT61eJvvLKK1FeXu6P8ByXd955J+bNmxcvvfRSm+P9+/ePMWPGRFNTUzQ1NfWJzTZZ6gWF1tdzIyvZka+suj4fv77eVzpLpnsf2QUAAAAAAIDe64RCFwCH3XbbbbFp06Z444034gtf+ELcc889hS6JjBswYECUlpbGypUrY8eOHdHU1BTbt2+Pf/iHf4g77rgj5syZE9u3b49cLnfMnzlz5hT64/SYn//8531+DX5bZ3JTWVlZ6DIhb1ntzPVZH+mY61Hn9KZM82uuiQAAAAAAANB7efJnkVq4cGE8/PDD0djYGOPGjYtvfetbMXv27EKX1aGKior46Ec/GiNHjozly5fHueeeW+iSyLiTTjopnnnmmVi0aFGcddZZ8cEHH8SgQYPivPPOi/vvvz/+/M//PEpKSnr91zofj870go9+9KNFvQZd1ZncFKMsXjf6unxltTPXZ32kY65HndObMs2v9dVrIgAAAAAAAGRBLuXpr8y5XC5qa2ujuro6H9PBcZHXI1VVVUVERH19fYErAbKgrq4uampqMruZLev1A/RG7icBAAAAAACg29T72ncAAAAAAAAAAACADLH5EwAAAAAAAAAAACBDbP4EAAAAAAAAAAAAyBCbPwEAAAAAAAAAAAAypCSfkz3//PP5nA7oZtu2bYu6urpClwFkQLFc8/U8gO6zbdu2GDVqVKHLAAAAAAAAgKKQ182fS5YsiSVLluRzSqAbNTQ0RE1NTaHLAMgbPQ+ge82ePbvQJQAAAAAAAEBRyOvmz9ra2qiurs7nlEUjl8tZvzzK5XKFLqFXmj17dtTX1xe6DAqkrq4uampqIqVU6FLIgMN5yTp5pzdxP0jWVVVVFboEAAAAAAAAKBonFLoAAAAAAAAAAAAAADrP5k8AAAAAAAAAAACADLH5EwAAAAAAAAAAACBDbP4EAAAAAAAAAAAAyBCbPwEAAAAAAAAAAAAyxOZPAAAAAAAAAAAAgAzJ5ObPdevWxUknnRRr164tdClAL6VPAHSd3gkAAAAAAAAA2ZDJzZ8ppUKXAPRy+gRA1+mdAAAAAAAAAJANmdz8OWPGjNi7d29cccUVhS4lDhw4EFOnTi10GQWXj3Ww1t1j69atcdlll8UjjzwS+/btK3Q5PUafoLvpc9k1d+7cuPPOO+PnP/95oUvp9fRO+gL9HAAAAAAAACgGmdz82ZusXLkydu7cWegyCi4f62Ctu8ehQ4fiRz/6UXz+85+PYcOGxaxZs+Kf//mf4+DBg4UurWjJbnHQ57Lr9ddfj0WLFsU555wT5513XjzwwAOxdevWQpfFMTgf6Cn6OQAAAAAAAFAMMrf5c8OGDTFmzJjI5XKxbNmyiIhYsWJFDBw4MCoqKmLNmjVx2WWXRWVlZYwaNSq+//3vt/7u0qVLo7y8PE499dS44YYbYvjw4VFeXh5Tp06NF154oXXcvHnzon///nH66ae3Hvvyl78cAwcOjFwuF7/61a8iIuKmm26KW2+9NTZv3hy5XC7OPPPMiIj40Y9+FJWVlbF48eJ8LMnvJKUUDz74YJxzzjlRVlYWQ4YMiauuuqrNU9GOZx2sdTY0NjbG2rVr43Of+1wMHTo0/uRP/iTWrl0bTU1NhS7tuOgTROhztO+///u/Y+HChTF27Nj4/d///fjbv/3b2LFjR6HL6hX0Tnor/RwAAAAAAADgSJnb/Dlt2rT4j//4jzbHbrzxxrj55pvjwIEDceKJJ0ZtbW1s3rw5zjjjjPizP/uz1o1s8+bNi+uuuy4+/PDDmD9/fmzZsiVefPHFaG5ujs9+9rOtTwFbunRpVFdXt5lj+fLlcffdd7c5tmTJkrjiiiti/PjxkVKKN998MyJ+/WTFiIiWlpYeWYPucNddd8WCBQvia1/7WuzcuTPWr18fW7dujenTp7dugjmedbDW2dHc3Bwppfjwww9j1apVMXPmzBg2bFhcf/31sWHDhkgpFbrELtMniNDnaF9KKZqamiKlFBs3boxbb701RowYEX/wB38QjzzySOzfv7/QJRaM3klvpZ8DAAAAAAAAHClzmz+PZerUqVFZWRnDhg2LOXPmxAcffBBvvfVWmzElJSWtTw4699xzY8WKFbF///54+OGHu6WGGTNmxL59++Ib3/hGt7xfdztw4EA8+OCDMWvWrLj22mvjpJNOiokTJ8bf//3fx69+9av4zne+021z9fW1zprm5uaIiNi7d29873vfi+nTp8eIESNi/vz5sWfPngJX1330ieKnz9EZKaU4dOhQtLS0xPr16+MLX/hCDB06NGbMmBENDQ2FLq/X0TspBP0cAAAAAAAAoH0lhS6gJ/Xv3z8i4phfYf3JT34yKioq2nx1ZDF77bXX4v33349PfvKTbY5/6lOfiv79+7f5esvulqW1rqmpiZqamkKXUTCNjY0REfHOO+/E0qVLIyLipJNOiqeffjouueSSQpbWrfSJ4qTP9R65XK7QJcSQIUOOOea3n8i3bt26WLduXURE3H777XH33XdHWVlZj9aYNXon+aKfAwAAAAAAALSvqDd/dkVZWVm8++67hS4jLw4/wXHQoEFHvDZ48OAe/8rbrKz1zTffHFOmTCl0Gd3u3XffjS9/+cudGltaWhpNTU0xduzYGDhwYIwePbqoNn52VVayiz7Xm9TV1RW6hPirv/qreO+99445rl+/ftHS0hJlZWVxwQUXxHPPPRf33HNPlJaW5qHK4uV84Hjo5wAAAAAAAADts/kzfv3Uqj179sSoUaMKXUpeDB48OCKi3T+W9/Q6ZGmtJ0+eHFVVVYUuo9tt2bKlw9f79+8fjY2Nccopp8Q111wTVVVVceGFF0Z1dXV+CuylspRd9LnepDf00W9/+9tHfa1fv34R8euvgL/oooviuuuui1mzZsW6deviueees/HzODkfOF76OQAAAAAAAED7bP6MiGeffTZSSjF58uTWYyUlJcf8KtOs+tjHPhaDBg2K//qv/2pz/IUXXojGxsa44IILWo919zr0tbXOitLS0mhubo6Kioq4+uqro7q6Oi677LIoKdEiDpPdbNHn6Egul4uSkpJobm6OCy64IK655pq45pprYtiwYYUureg4Hzhe+jkAAAAAAABA+04odAGF0NLSEu+99140NzfHK6+8EjfddFOMGTMmrrvuutYxZ555ZuzevTuefPLJaGpqinfffTd++ctfHvFeJ598cmzfvj22bNkS+/fvj6ampnjqqaeisrIyFi9enMdP1Xnl5eVx6623xhNPPBGPPfZY7Nu3L1599dWYO3duDB8+PK6//vrWscezDhHWujc74YQTIpfLRVlZWcyaNSvWrFkTu3fvjkcffTSuuOKKPr/xU3azTZ+jPYf72qRJk+Kv//qvY9u2bfHCCy/E/PnzbfzsJs4Hupt+DgAAAAAAANC+zG3+XLZsWXzqU5+KiIjbbrstrrzyylixYkU89NBDERHx8Y9/PP7nf/4nvvvd78att94aERGXXnppbNq0qfU9Dh48GBMnTowBAwbE9OnT46yzzop//dd/jbKystYxN954Y3zmM5+JP/qjP4qzzz477rnnnhgwYEBEREyZMiW2bt0aERFz586NU089Nc4999y4/PLLY/fu3XlZh+N15513xn333ReLFi2KU045JS6++OL4yEc+Es8++2wMHDiwddzxroO17p1KS0vjkksuicceeyx27doVq1atiiuuuCL69+9f6NK6hT5BhD7Hb/Tr1y/Gjx8fd9xxR2zatClefPHFuOmmm2LEiBGFLq1X0TvprfRzAAAAAAAAgCPlUkopLxPlclFbWxvV1dX5mO6obrjhhqivr49du3YVtI6u6i3r1xVZXeuIbK53Zx08eDA+/PDDOPnkk7v0e1VVVRERUV9f3xNl9SpZzm5Pqquri5qamsjTZSMTZOXoelNetm/f3uWNnr2p/qxwPvS8Yr4/KTT5zY++dD8JAAAAAAAAPay+T36v86FDhwpdQp9hrXuf8vLyKC8vL3QZvZ7s0lmy0vt5wmf+OB/IMvkFAAAAAAAAsiRzX/sOAAAAAAAAAAAA0Jf1qc2fCxcujIcffjj27t0b48aNi8cff7zQJRUta01WyS6dJSvwG84Hskx+AQAAAAAAgCzqU1/7ft9998V9991X6DL6BGtNVskunSUr8BvOB7JMfgEAAAAAAIAs6lNP/gQAAAAAAAAAAADIOps/AQAAAAAAAAAAADLE5k8AAAAAAAAAAACADLH5EwAAAAAAAAAAACBDSvI52UMPPRT19fX5nLKoWD8KraGhIaqqqgpdBgWybdu2iAgZoFMO5yXr5J3exv0gWdbQ0BCTJ08udBkAAAAAAABQFDz5MyNmz54do0aNanOsoaEhGhoaClQR0NeMGjUqZs+efcTxxx9/vGg2+gH0Zu4HAQAAAAAAADgsr0/+vPnmm6O6ujqfUxa1w08j8/Sn7pfL5QpdQq80efJkeeMIuVxOf+cIdXV1UVNTU+gyjpueR2/nfpAs8TRlAAAAAAAA6D6e/AkAAAAAAAAAAACQITZ/AgAAAAAAAAAAAGSIzZ8AAAAAAAAAAAAAGWLzJwAAAAAAAAAAAECG2PwJAAAAAAAAAAAAkCGZ2/x5ww03RC6Xa/259tprjxjz4x//OBYsWBAtLS1x9dVXx5gxY6K8vDxGjhwZV155Zbzyyiu/8/wtLS3x0EMPxdSpU4947Qc/+EF885vfjEOHDrU5/uSTT7ap+ZRTTvmd5+8p1pW+prflmd5BLqBjzhGyoieyeu+997a59zz887GPfax1jKwCAAAAAAAA+ZK5zZ8RESeffHI89dRT8frrr8fKlSvbvHbnnXfG0qVLY+HChdHS0hL//u//Hv/0T/8Uu3fvjg0bNsSBAwfioosuiu3bt3d53k2bNsVFF10Ut9xyS3z44YdHvD5z5swoLy+PP/zDP4w9e/a0Hr/yyitj27ZtsX79+rj88su7/oHzxLrSV/TGPFN4cgEdc46QFT2Z1WORVQAAAAAAACBfMrn5c8CAAXHppZfGWWedFWVlZa3H77///li1alXU1dXFiSeeGBERU6ZMiWnTpkVFRUWMGzcuFi9eHHv37o3vfe97XZrz5Zdfjttvvz3mzp0bkyZNOuq4+fPnxyc+8Ym4/PLLo7m5OSIicrlcjBw5MqZPnx4TJkzo+gfOE+tKX9Bb80xhyQV0zDlCVvRkViMiHn300Ugptfn56U9/2maMrAIAAAAAAAD5kMnNn+1588034xvf+EbcfffdUV5eHhERJSUlsXbt2jbjzjjjjIiI2Lx5c5fe/xOf+ESsXr06/viP/7jNxsj23HXXXfHSSy/FkiVLujRHb2RdKSbyTHvkAjrmHCErejqrXSGrAAAAAAAAQE8rms2fS5cujZRSzJw5s8NxBw4ciIiIysrKHqtlyJAhcfHFF8eSJUsipdRj8+SDdaWYyDPtkQvomHOErJBVAAAAAAAAoC8pms2fP/zhD+Pss8+OioqKDsf953/+Z0RETJs2rUfrOf/88+Ptt9+Ol19+uUfn6WnWlWIiz7RHLqBjzhGyIh9ZXbBgQQwZMiT69+8f48aNi6uuuio2btzY7lhZBQAAAAAAAHpSUWz+/OCDD+IXv/hFjB8//qhjduzYEatWrYr58+fHlClTjvlEoOM1YcKEiIh49dVXe3SenmRdKSbyTHvkAjrmHCEr8pHVz3/+8/GDH/wgtm7dGu+//358//vfj7feeisuvvjieO21144YL6sAAAAAAABATyopdAHdYefOnZFS6vApP1OmTIkPPvggqqur4957743S0tIerelwLTt27OjReXqSdaWYyDPtkQvomHOErMhHVkePHh2jR49u/ffkyZPj4YcfjkmTJsXy5ctjxYoVbcbLKgAAAAAAANCTimLz58GDByMioqys7KhjTj311Fi5cmWcd955ealpwIABbWrLIutKMZFn2iMX0DHnCFlRqKxOnDgx+vXrF2+88cYRr8kqAAAAAAAA0JOK4mvfD/9h9dChQ0cdM2zYsBg8eHC+SorGxsaI+E1tWWRdKSbyTHvkAjrmHCErCpXVlpaWaGlpaXfTqawCAAAAAAAAPakonvx56qmnRi6Xi7179x51zNq1a/NYUbTWctppp+V13u5kXSkm8kx75AI65hwhK/KR1UsuuSSefvrpNsc2btwYKaWYMmXKEeNlFQAAAAAAAOhJRfHkz4qKijjjjDNi27Zt7b7+5ptvxmmnnRY1NTVHvDZnzpw47bTT4sUXX+zWmg7XMnHixG5933yyrhQTeaY9cgEdc46QFfnI6ttvvx2rVq2KPXv2RFNTUzz//PPxpS99KcaMGRNz5849YrysAgAAAAAAAD2pKDZ/RkTMmDEjXnvttThw4MARr6WUjvp7jY2NsXPnzlizZk2H79/Q0BDTpk2LESNGxAsvvBAvv/xyDB8+PC688MJYv379EeM3btwYI0eOjI9//ONd/zC9iHWlmMgz7ZEL6JhzhKzo6axeeuml8fWvfz1GjRoVFRUVUV1dHRdeeGE0NDTE0KFDjxgvqwAAAAAAAEBPKoqvfY+I+MpXvhIrVqyI1atXx7XXXtvmtQkTJsSOHTva/b3HH388Pv3pT8fYsWM7fP/JkyfHhg0bOlXLrl274l/+5V/i3nvvjVwu17kP0EtZV4qJPNMeuYCOOUfIip7O6gMPPBAPPPBAp2qRVQAAAAAAAKCnZfLJnwcOHIinn346Nm3aFI2NjRERceaZZ8aiRYti0aJF8f7773fqfQ4dOhRPPvlk7N+/P+bMmdNt9d11110xadKkmDdvXkT8+klD27dvjw0bNsSbb77ZbfN0N+tKsevNeaZw5AI65hwhK2QVAAAAAAAA6Esyuflz9+7dcemll8ZZZ50Vf/qnf9p6fMGCBVFVVRVz5syJvXv3HvN9nn322Vi9enU89dRTUVFR0S21Pfjgg/HSSy/FunXrorS0NCIi1qxZEyNHjozp06fHD3/4w26ZpydYV/qC3ppnCksuoGPOEbJCVgEAAAAAAIC+IpdSSnmZKJeL2traqK6u7vG5nnnmmfjJT34S999/f4/P9dvWrFkTP/vZz+Iv//Ivo1+/fj0+X1VVVURE1NfX9/hcEX1nXSPym9esyHfeelpfynNPK6bzRS66T11dXdTU1ESebjO6Xdbr7ynOkd6n2K7P3UVWeyd5BQAAAAAAgG5TX5SbP/sKfzztOfJ6JHnjaJwvtCfrmyezXj99h+szWSKvAAAAAAAA0G3qM/m17wAAAAAAAAAAAAB9lc2fAAAAAAAAAAAAABli8ycAAAAAAAAAAABAhtj8CQAAAAAAAAAAAJAhNn8CAAAAAAAAAAAAZEhJPierqamJmpqafE7ZJ+RyuUKXQB/x+OOPyxvt0t8pVnoeWSGrZMXs2bMLXQIAAAAAAAAUhbxt/qytrc3XVNAtpk6dWugSepVbbrklqqqqCl0GQF5MnTrVvQtADxg9enShSwAAAAAAAICikEsppUIXAQAAAAAAAAAAAECn1J9Q6AoAAAAAAAAAAAAA6DybPwEAAAAAAAAAAAAyxOZPAAAAAAAAAAAAgAwpiYj6QhcBAAAAAAAAAAAAQKc0/B9sE5/Miov9MgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 23, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "# Convert the feature columns into a tf.keras layer\n", "all_features = tf.keras.layers.concatenate(encoded_features)\n", "\n", "# design/build the model\n", "x = tf.keras.layers.Dense(32, activation=\"relu\")(all_features)\n", "x = tf.keras.layers.Dropout(0.5)(x)\n", "x = tf.keras.layers.Dense(64, activation=\"relu\")(x)\n", "x = tf.keras.layers.Dropout(0.5)(x)\n", "output = tf.keras.layers.Dense(1)(x)\n", "model = tf.keras.Model(all_inputs, output)\n", "\n", "tf.keras.utils.plot_model(model, rankdir='LR', show_shapes=True)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "LTDFVxpSLfXI" }, "outputs": [], "source": [ "# compile the model\n", "model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "SIJMg-saLgeR" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.\n", " [n for n in tensors.keys() if n not in ref_input_names])\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "253/253 [==============================] - 4s 14ms/step - loss: 0.6169 - accuracy: 0.6042\n", "Epoch 2/10\n", "253/253 [==============================] - 4s 14ms/step - loss: 0.5634 - accuracy: 0.6937\n", "Epoch 3/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5573 - accuracy: 0.6981\n", "Epoch 4/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5528 - accuracy: 0.7087\n", "Epoch 5/10\n", "253/253 [==============================] - 4s 14ms/step - loss: 0.5512 - accuracy: 0.7173\n", "Epoch 6/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5456 - accuracy: 0.7219\n", "Epoch 7/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5397 - accuracy: 0.7283\n", "Epoch 8/10\n", "253/253 [==============================] - 4s 14ms/step - loss: 0.5385 - accuracy: 0.7331\n", "Epoch 9/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5355 - accuracy: 0.7326\n", "Epoch 10/10\n", "253/253 [==============================] - 4s 15ms/step - loss: 0.5412 - accuracy: 0.7321\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "# fit the model\n", "model.fit(train_ds, epochs=EPOCHS)" ] }, { "cell_type": "markdown", "metadata": { "id": "XYJW8za2qm4c" }, "source": [ "## Infer on the test data" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "6hMtIe1X215P" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.\n", " [n for n in tensors.keys() if n not in ref_input_names])\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "109/109 [==============================] - 2s 15ms/step - loss: 0.5344 - accuracy: 0.7421\n", "test loss, test acc: [0.534355640411377, 0.7420566082000732]\n" ] } ], "source": [ "res = model.evaluate(test_ds)\n", "print(\"test loss, test acc:\", res)" ] }, { "cell_type": "markdown", "metadata": { "id": "2SvFjOJcdRyO" }, "source": [ "Note: Since the goal of this tutorial is to demonstrate Tensorflow-IO's capability to stream data from elasticsearch and train `tf.keras` models directly, improving the accuracy of the models is out of the current scope. However, the user can explore the dataset and play around with the feature columns and model architectures to get a better classification performance." ] }, { "cell_type": "markdown", "metadata": { "id": "P8QAS_3k1y3u" }, "source": [ "## References:\n", "\n", "- [Elasticsearch](https://www.elastic.co/guide/en/elasticsearch/reference/current/targz.html)\n", "\n", "- [PetFinder Dataset](https://www.kaggle.com/c/petfinder-adoption-prediction)\n", "\n", "- [Classify Structured Data using Keras](https://www.tensorflow.org/tutorials/structured_data/preprocessing_layers#create_compile_and_train_the_model)\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "elasticsearch.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }