-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathbates.py
523 lines (442 loc) · 20.5 KB
/
bates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# Copyright 2020 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Bates distribution class."""
import sys
# Dependency imports
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import sigmoid as sigmoid_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import distribution_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
from tensorflow_probability.python.math import special
__all__ = [
'Bates',
]
BATES_TOTAL_COUNT_STABILITY_LIMITS = {
tf.float64: 75.,
np.float64: 75.,
np.finfo(np.float64).dtype: 75.,
tf.float32: 25.,
np.float32: 25.,
np.finfo(np.float32).dtype: 25.,
# Not an allowed type but we keep this here for the record.
tf.float16: 7.,
np.float16: 7.,
np.finfo(np.float16).dtype: 7.,
}
class Bates(distribution.AutoCompositeTensorDistribution):
"""Bates distribution.
The Bates distribution is the distribution of the average of `total_count`
independent samples from `Uniform(low, high)`. It is parameterized by the
interval bounds `low` and `high`, and `total_count`, the number of samples.
Although some care has been taken to avoid numerical issues, the `pdf`, `cdf`,
and log versions thereof may still exhibit numerical instability. They are
relatively stable near the tails; however near the mode they are unstable if
`total_count` is greater than about `75` for `tf.float64`, `25` for
`tf.float32`, and `7` for `tf.float16`. Beyond these limits a warning will be
shown if `validate_args=False`; otherwise an exception is thrown. For high
`total_count`, consider using a `Normal` approximation.
#### Mathematical Details
The probability density function (pdf) is supported in the interval
`[low, high]`. If `[low, high]` is the unit interval `[0, 1]`, the pdf
is,
```none
pdf(x; n, 0, 1) =
((n / (n-1)!) sum_{k=0}^j (-1)^k (n choose k) (nx - k)^{n-1}
```
where
* `total_count = n`,
* `j = floor(nx)`
* `n!` is the factorial of `n`,
* `(n choose k)` is the binomial coefficient `n! / (k!(n - k)!),
For arbitrary intervals `[low, high]`, the pdf is,
```none
pdf(x; n, low, high) = pdf((x - low) / (high - low); n, 0, 1) / (high - low)
```
#### Examples
Create a single distribution for the mean of 5 uniform random variables on the
interval `[-10, 5]`.
```python
dist = tfd.Bates(total_count=5., low=-10., high=5.)
```
Create a 3-batch of distributions with varying total counts and intervals.
```python
counts = [1., 2., 5.]
# high will be broadcast to [100., 100., 100.]
dist = tfd.Bates(total_count=counts, low=[0., 5., 10.], high=100.)
```
Compute some values for the pdf.
```python
dist.prob(50.) # shape: [3]
x = [[50., 50., 50.],
[5., 10., 20.]] # shape: [2, 3]
dist.prob(x) # shape: [2, 3]
```
"""
def __init__(self,
total_count,
low=0.,
high=1.,
validate_args=False,
allow_nan_stats=True,
name='Bates'):
"""Construct a Bates distribution.
Args:
total_count: Non-negative integer-valued `Tensor` with shape broadcastable
to the batch shape `[N1,..., Nm]`, `m >= 0`. This controls the number of
samples of `Uniform(low, high)` to take the mean of.
low: Floating point `Tensor` representing the lower bounds of the support.
Should be broadcastable to `[N1,..., Nm]` with `m >= 0`, the same dtype
as `total_count`, and `low < high` component-wise, after broadcasting.
Defaults to `0`.
high: Floating point `Tensor` representing the upper bounds of the
support. Should be broadcastable to `[N1,..., Nm]` with `m >= 0`, the
same dtype as `total_count`, and `low < high` component-wise, after
broadcasting. Defaults to `1`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([low, high], dtype_hint=tf.float32)
assert dtype in (tf.float32, tf.float64), (
'`Bates` only supports `tf.float32` or `tf.float64`')
self._total_count = tensor_util.convert_nonref_to_tensor(
total_count, name='total_count', dtype_hint=dtype)
self._low = tensor_util.convert_nonref_to_tensor(
low, dtype=dtype, name='low')
self._high = tensor_util.convert_nonref_to_tensor(
high, dtype=dtype, name='high')
super(Bates, self).__init__(
dtype=dtype,
reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
return dict(
total_count=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=parameter_properties
.BIJECTOR_NOT_IMPLEMENTED,
# The method `_sample_bates` currently constructs intermediate
# samples with a shape that depends on `total_count`, so, although
# `total_count` is not *inherently* a shape parameter, we annotate
# it as one in the current implementation (making it the rare case
# of a shape parameter that also has batch semantics). This could
# be removed if a different sampling method (eg, rejection sampling)
# were used.
specifies_shape=True),
low=parameter_properties.ParameterProperties(),
# TODO(b/169874884): Support decoupled parameterization.
high=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=parameter_properties
.BIJECTOR_NOT_IMPLEMENTED))
@property
def total_count(self):
"""Number of `Uniform` trials used to construct a sample."""
return self._total_count
@property
def low(self):
"""Lower bound of the support."""
return self._low
@property
def high(self):
"""Upper bound of the support."""
return self._high
def _params_list(self):
return [('total_count', self._total_count),
('low', self._low),
('high', self._high)]
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
def _sample_n(self, n, seed=None):
total_count = tf.cast(self.total_count, tf.int32)
low = tf.convert_to_tensor(self.low)
high = tf.convert_to_tensor(self.high)
return _sample_bates(
ps.broadcast_to(total_count, self._batch_shape_tensor()),
low, high, n, seed=seed)
def _prob(self, value):
return _bates_pdf(self.total_count, self.low, self.high, self.dtype, value)
def _cdf(self, value):
return _bates_cdf(self.total_count, self.low, self.high, self.dtype, value)
def _mean(self):
return tf.broadcast_to(
(self.low + self.high) / 2., self._batch_shape_tensor())
@distribution_util.AppendDocstring(
'For `n = 1`, any value in `(low, high)` is a mode; this gives the mean.')
def _mode(self):
return self._mean()
def _variance(self):
return tf.math.square(self.high - self.low) / (
12. * tf.cast(self.total_count, self.dtype))
def _default_event_space_bijector(self):
return sigmoid_bijector.Sigmoid(
low=self.low, high=self.high, validate_args=self.validate_args)
def _parameter_control_dependencies(self, is_init):
if not self.validate_args:
return []
if is_init:
try:
self._batch_shape()
except ValueError:
raise ValueError(
'Arguments `total_count`, `low` and `high` must have compatible '
'shapes; total_count.shape={}, low.shape={}, '
'high.shape={}.'.format(
tf.shape(self.total_count),
tf.shape(self.low),
tf.shape(self.high)))
assertions = []
if is_init != tensor_util.is_ref(self.total_count):
total_count = tf.convert_to_tensor(self.total_count)
limit = BATES_TOTAL_COUNT_STABILITY_LIMITS[self.dtype]
msg = '`total_count` must be representable as a 32-bit integer.'
assertions.extend([
assert_util.assert_positive(
total_count,
message='`total_count` must be positive.'),
distribution_util.assert_casting_closed(
total_count,
target_dtype=tf.int32,
message=msg),
assert_util.assert_less_equal(
tf.cast(total_count, self.dtype),
tf.cast(limit, self.dtype),
message='`total_count` > {} is numerically unstable.'.format(
limit))
])
if is_init != (tensor_util.is_ref(self.low) or
tensor_util.is_ref(self.high)):
assertions.append(assert_util.assert_less(
self.low, self.high, message='`low` must be less than `high`.'))
return assertions
# TODO(b/157665707): Investigate alternative PDF formulas / computations.
def _bates_pdf(total_count, low, high, dtype, value):
"""Compute the Bates pdf.
Internally, the (standard, unnormalized) pdf is computed by the formula
```none
pdf = sum_{k=0}^j (-1)^k (n choose k) (nx - k)^{n - 1}
```
where
* `n = total_count`,
* `x = value` the value to compute the probability of, and
* `j = floor(nx)`.
This is shifted to `[low, high]` and normalized. Since the pdf is symmetric,
we only compute the left half, which keeps the number of terms lower.
Computation is batched, using `tf.math.segment_sum()`. For this reason this is
not compatible with `tf.vectorized_map()`.
All input parameters should have compatible dtypes and shapes.
Args:
total_count: `Tensor` with integer values, as given to the `Bates`
constructor.
low: Float `Tensor`, as given to the `Bates` constructor.
high: Float `Tensor`, as given to the `Bates` constructor.
dtype: The dtype of the output.
value: Float `Tensor`. Input value to `prob()`.
Returns:
pdf: Float `Tensor`. See above formula.
"""
total_count = tf.cast(total_count, dtype)
low = tf.convert_to_tensor(low)
high = tf.convert_to_tensor(high)
# Warn the user if they try to compute a pdf with high `total_count`. This
# warning is here instead of `_parameter_control_dependencies()` because
# nested calls to `_name_and_control_scope` (e.g. `log_survival_function`) can
# result in multiple warnings being added and multiple tensor
# conversions. Also `sample()` does not have the same numerical issues.
with tf.control_dependencies([_stability_limit_tensor(total_count, dtype)]):
# Center and adjust `value` using limits and symmetry.
range_ = high - low
value_centered = (value - low) / range_
value_adj = tf.clip_by_value(value_centered, 0., 1.)
value_adj = tf.where(value_adj < .5, value_adj, 1. - value_adj)
value_adj = tf.where(tf.math.is_finite(value_adj), value_adj, 0.)
# Flatten to make segments; need to broadcast before flattening.
shape = ps.broadcast_shape(ps.shape(value_adj), ps.shape(total_count))
total_count_b = ps.broadcast_to(total_count, shape)
total_count_x_value_adj_b = total_count * value_adj
total_count_f = tf.reshape(total_count_b, [-1])
total_count_x_value_adj_f = tf.reshape(total_count_x_value_adj_b, [-1])
# Create segmented terms of summation.
num_terms_f = tf.cast(tf.math.floor(total_count_x_value_adj_f + 1),
dtype=tf.int32)
term_idx_s = tf.cast(_segmented_range(num_terms_f), dtype) # aka `k`
total_count_s = tf.repeat(total_count_f, num_terms_f)
total_count_x_value_adj_s = tf.repeat(total_count_x_value_adj_f,
num_terms_f)
terms = (tf.cast(-1., dtype) ** term_idx_s
* (1. / ((total_count_s + 1.) * tf.math.exp(
special.lbeta(total_count_s - term_idx_s + 1.,
term_idx_s + 1.))))
* (total_count_x_value_adj_s - term_idx_s) ** (total_count_s - 1.))
# Segment sum.
segment_ids = tf.repeat(tf.range(tf.size(num_terms_f)), num_terms_f)
pdf_s = tf.math.segment_sum(terms, segment_ids)
# Reshape back.
pdf = tf.reshape(pdf_s, shape)
# Normalize.
pdf = pdf * total_count_b / (
range_ * tf.math.exp(tf.math.lgamma(total_count_b)))
# Fix out-of-support queries.
pdf = tf.where((value_centered < 0.) | (value_centered > 1.),
tf.cast(0., dtype), pdf)
pdf = tf.where(tf.math.is_finite(value_centered), pdf, np.nan)
return pdf
# TODO(b/157665707): Investigate alternative CDF formulas / computations.
def _bates_cdf(total_count, low, high, dtype, value):
"""Compute the Bates cdf.
Internally, the (standard, unnormalized) cdf is computed by the formula
```none
pdf = sum_{k=0}^j (-1)^k (n choose k) (nx - k)^n
```
where
* `n = total_count`,
* `x = value` the value to compute the cumulative probability of, and
* `j = floor(nx)`.
This is shifted to `[low, high]` and normalized. Since the pdf is symmetric,
we have `cdf(x) = 1 - cdf(1 - x)` for `x > .5`, hence we only compute the left
half, which keeps the number of terms lower.
Computation is batched, using `tf.math.segment_sum()`. For this reason this is
not compatible with `tf.vectorized_map()`.
All input parameters should have compatible dtypes and shapes.
Args:
total_count: `Tensor` with integer values, as given to the `Bates`
constructor.
low: Float `Tensor`, as given to the `Bates` constructor.
high: Float `Tensor`, as given to the `Bates` constructor.
dtype: The dtype of the output.
value: Float `Tensor`. Input value to `cdf()`.
Returns:
cdf: Float `Tensor`. See above formula.
"""
total_count = tf.cast(total_count, dtype)
low = tf.convert_to_tensor(low)
high = tf.convert_to_tensor(high)
# Warn the user if they try to compute a pdf with high `total_count`. This
# warning is here instead of `_parameter_control_dependencies()` because
# nested calls to `_name_and_control_scope` (e.g. `log_survival_function`) can
# result in multiple warnings being added and multiple tensor
# conversions. Also `sample()` does not have the same numerical issues.
with tf.control_dependencies([_stability_limit_tensor(total_count, dtype)]):
# Center and adjust `value` using limits and symmetry.
value_centered = (value - low) / (high - low)
value_adj = tf.clip_by_value(value_centered, 0., 1.)
value_adj = tf.where(value_adj < .5, value_adj, 1. - value_adj)
value_adj = tf.where(tf.math.is_finite(value_adj), value_adj, 0.)
# Flatten to make segments; need to broadcast before flattening.
shape = ps.broadcast_shape(ps.shape(value_adj), ps.shape(total_count))
total_count_b = ps.broadcast_to(total_count, shape)
total_count_x_value_adj_b = total_count * value_adj
total_count_f = tf.reshape(total_count_b, [-1])
total_count_x_value_adj_f = tf.reshape(total_count_x_value_adj_b, [-1])
# Create segmented terms of summation.
num_terms_f = tf.cast(tf.math.floor(total_count_x_value_adj_f + 1),
dtype=tf.int32)
term_idx_s = tf.cast(_segmented_range(num_terms_f), dtype) # aka `k`
total_count_s = tf.repeat(total_count_f, num_terms_f)
total_count_x_value_adj_s = tf.repeat(total_count_x_value_adj_f,
num_terms_f)
terms = (tf.cast(-1., dtype) ** term_idx_s
* (1. / ((total_count_s + 1.) * tf.math.exp(
special.lbeta(total_count_s - term_idx_s + 1.,
term_idx_s + 1.))))
* (total_count_x_value_adj_s - term_idx_s) ** total_count_s)
# Segment sum.
segment_ids = tf.repeat(tf.range(tf.size(num_terms_f)), num_terms_f)
cdf_s = tf.math.segment_sum(terms, segment_ids)
# Reshape back.
cdf = tf.reshape(cdf_s, shape)
# Normalize.
cdf = cdf / tf.math.exp(tf.math.lgamma(total_count_b + tf.cast(1., dtype)))
# cdf symmetry adjustment: cdf(x) = 1 - cdf(1 - x) for x > 0.5
cdf = tf.where(value_centered > .5, 1. - cdf, cdf)
# Fix out-of-support queries.
cdf = tf.where(value_centered < 0., tf.cast(0., dtype), cdf)
cdf = tf.where(value_centered > 1., tf.cast(1., dtype), cdf)
cdf = tf.where(tf.math.is_finite(value_centered), cdf, np.nan)
return cdf
def _stability_limit_tensor(total_count, dtype):
limit = tf.cast(BATES_TOTAL_COUNT_STABILITY_LIMITS[dtype], dtype)
return tf.cond(
tf.math.reduce_any(total_count > limit),
# pylint: disable=g-long-lambda
lambda: tf.print(
'WARNING: Bates PDF/CDF is unstable for `total_count` >', limit,
output_stream=sys.stderr),
tf.no_op)
def _segmented_range(limits):
"""Equivalent to `tf.ragged.range(limits).flat_values`.
Ragged Tensors are are not supported by numpy.
Args:
limits: Integer `Tensor` of sizes of each range.
Returns:
segments: 1D `Tensor` of segment ranges.
"""
# To cope with [0]-shaped limits, which disagrees with the sensibilities of
# tf.repeat, we left-pad, then slice the output.
limits = tf.pad(limits, [[1, 0]], constant_values=0)
return (tf.range(tf.reduce_sum(limits)) -
tf.repeat(tf.concat([[0], tf.cumsum(limits[:-1])], axis=0), limits))
# TODO(b/157665707): Investigate rejection sampling for the Bates sampler.
def _sample_bates(total_count, low, high, n, seed=None):
"""Vectorized production of `Bates` samples.
Args:
total_count: (Batches of) counts of `Uniform`s to take means of. Should
have integer dtype and already be broadcasted to the batch shape.
low: (Batches of) lower bounds of the `Uniform` variables to sample. Should
be the same floating dtype as `high` and broadcastable to the batch shape.
high: (Batches of) upper bounds of the `Uniform` variables to sample. Should
be the same floating dtype as `low` and broadcastable to the batch shape.
n: `int32` number of samples to generate.
seed: PRNG seed; see `tfp.random.sanitize_seed` for details.
Returns:
samples: Samples of (batches of) the `Bates` variable. Will have same dtype
as `low` and `high`. If the batch shape is `[B1,..., Bn]`, `samples` has
shape `[n, B1,..., Bn]`.
"""
# 1. Sample Uniform(0, 1)s, flattening the batch dimension into axis 0.
uniform_sample_shape = ps.concat([[ps.reduce_sum(total_count)], [n]], axis=0)
uniform_samples = samplers.uniform(
uniform_sample_shape, minval=0., maxval=1., dtype=low.dtype, seed=seed)
# 2. Produce segment means.
segment_lengths = tf.reshape(total_count, [-1])
segment_ids = tf.repeat(tf.range(tf.size(segment_lengths)), segment_lengths)
flatmeans = tf.math.segment_mean(uniform_samples, segment_ids)
# 3. Reshape and transpose segment means back to the original shape.
outshape = tf.concat([tf.shape(total_count), [n]], axis=0)
tmeans = tf.reshape(flatmeans, outshape)
axes = tf.range(tf.rank(tmeans))
means = tf.transpose(tmeans, tf.roll(axes, shift=1, axis=0))
# 4. Shift/scale from (0, 1) to (low, high).
return low + (high - low) * means