-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathbinomial.py
592 lines (494 loc) · 22.2 KB
/
binomial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""The Binomial distribution class."""
# Dependency imports
import tensorflow.compat.v2 as tf
from tensorflow_probability.python.bijectors import sigmoid as sigmoid_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import batched_rejection_sampler
from tensorflow_probability.python.internal import distribution_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import implementation_selection
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
from tensorflow_probability.python.internal import tensorshape_util
from tensorflow_probability.python.math import special
_binomial_sample_note = """
For each batch member of counts `value`, `P[value]` is the probability that
after sampling `self.total_count` draws from this Binomial distribution, the
number of successes is `value`. Since different sequences of draws can result in
the same counts, the probability includes a combinatorial coefficient.
Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape
can be broadcast with `self.probs` and `self.total_count`. `value` is only legal
if it is less than or equal to `self.total_count` and its components are equal
to integer values.
"""
def _bdtr(k, n, p):
"""The binomial cumulative distribution function.
Args:
k: floating point `Tensor`.
n: floating point `Tensor`.
p: floating point `Tensor`.
Returns:
`sum_{j=0}^k p^j (1 - p)^(n - j)`.
"""
# Trick for getting safe backprop/gradients into n, k when
# betainc(a = 0, ..) = nan
# Write:
# where(unsafe, safe_output, betainc(where(unsafe, safe_input, input)))
ones = tf.ones_like(n - k)
safe_dn = tf.where(tf.logical_or(k < 0, k >= n), ones, n - k)
dk = special.betainc(a=safe_dn, b=k + 1, x=1 - p)
return distribution_util.extend_cdf_outside_support(k, dk, low=0, high=n)
def _random_binomial_cpu(
shape,
counts,
probs,
output_dtype=tf.float32,
seed=None,
name=None):
"""Sample using *fast* `tf.random.stateless_binomial`."""
with tf.name_scope(name or 'binomial_cpu'):
probs = tf.where(counts > 0, probs, 0)
batch_shape = ps.broadcast_shape(ps.shape(counts), ps.shape(probs))
samples = tf.random.stateless_binomial(
shape=ps.concat([shape, batch_shape], axis=0),
seed=seed, counts=counts, probs=probs, output_dtype=output_dtype)
return samples
# These functions are ported from random_binomial_op.cc in TF and manually
# vectorized.
def _binomial_inversion(counts, probs, full_shape, seed):
"""Use multiple geometric samples to sample binomials with count*prob < 10."""
# Binomial inversion. Given probs, sum geometric random variables until they
# exceed counts. The number of random variables used is binomially
# distributed. This is also known as binomial inversion, as this is equivalent
# to inverting the Binomial CDF.
seed = samplers.sanitize_seed(seed)
zero_init = tf.zeros(full_shape, counts.dtype)
def cond(keep_going, *_):
return keep_going
# If probs were 1 we would loop forever. :(
# But probs is always <= 0.5 here, as guaranteed by the caller.
log1minusprob = tf.math.log1p(-probs)
def body(unused_keep_going, geom_sum, num_geom, seed):
u_seed, next_seed = samplers.split_seed(seed)
u = samplers.uniform(full_shape, seed=u_seed, dtype=counts.dtype)
geom = tf.math.ceil(tf.math.log(u) / log1minusprob)
geom_sum += geom
keep_going = (geom_sum <= counts)
num_geom = tf.where(keep_going, num_geom + 1, num_geom)
return tf.reduce_any(keep_going), geom_sum, num_geom, next_seed
_, _, num_geom, _ = tf.while_loop(
cond, body, (True, zero_init, zero_init, seed))
return num_geom
def _stirling_approx_tail(k):
"""Utility for `_btrs`."""
tail_values = tf.constant(
[0.0810614667953272, 0.0413406959554092, 0.0276779256849983,
0.02079067210376509, 0.0166446911898211, 0.0138761288230707,
0.0118967099458917, 0.0104112652619720, 0.00925546218271273,
0.00833056343336287],
dtype=k.dtype)
safe_tail_k = tf.clip_by_value(tf.cast(k, tf.int32), 0, 9)
kp1sq = (k + 1) * (k + 1)
nontail = (1.0 / 12 - (1.0 / 360 - 1.0 / 1260 / kp1sq) / kp1sq) / (k + 1)
return tf.where(k <= 9, tf.gather(tail_values, safe_tail_k), nontail)
def _btrs(counts, probs, full_shape, seed):
"""Binomial transformed rejection sampler, for count*prob >= 10."""
# We use a transformation-rejection algorithm from
# pairs of uniform random variables due to Hormann.
# https://www.tandfonline.com/doi/abs/10.1080/00949659308811496
seed = samplers.sanitize_seed(seed)
# This is spq in the paper.
stddev = tf.math.sqrt(counts * probs * (1 - probs))
# Other coefficients for Transformed Rejection sampling.
b = 1.15 + 2.53 * stddev
a = -0.0873 + 0.0248 * b + 0.01 * probs
c = counts * probs + 0.5
r = probs / (1 - probs)
alpha = (2.83 + 5.1 / b) * stddev
m = tf.math.floor((counts + 1) * probs)
def batched_las_vegas_trial_fn(seed):
u_seed, v_seed = samplers.split_seed(seed)
u = samplers.uniform(full_shape, seed=u_seed, dtype=counts.dtype) - 0.5
v = samplers.uniform(full_shape, seed=v_seed, dtype=counts.dtype)
us = 0.5 - tf.math.abs(u)
k = tf.math.floor((2 * a / us + b) * u + c)
# When the bounding box is tight, this criteria is more numerically stable
# and equally valid. Particularly on GPU/TPU, it may make the difference
# between terminating and non-terminating loops.
v_r = 0.92 - 4.2 / b
accept_boxed = (us >= 0.07) & (v <= v_r)
# Reject non-sensical answers.
reject = (k < 0) | (k > counts)
# This deviates from Hormann's BTRS algorithm, as there is a log missing.
# For all (u, v) pairs outside of the bounding box, this calculates the
# transformed-reject ratio.
v = tf.math.log(v * alpha / (a / (us * us) + b))
upperbound = (
(m + 0.5) * tf.math.log((m + 1) / (r * (counts - m + 1))) +
(counts + 1) * tf.math.log((counts - m + 1) / (counts - k + 1)) +
(k + 0.5) * tf.math.log(r * (counts - k + 1) / (k + 1)) +
_stirling_approx_tail(m) + _stirling_approx_tail(counts - m) -
_stirling_approx_tail(k) - _stirling_approx_tail(counts - k))
accept_bounded = v <= upperbound
return k, (~reject) & (accept_boxed | accept_bounded)
return batched_rejection_sampler.batched_las_vegas_algorithm(
batched_las_vegas_trial_fn, seed=seed)[0] # Pick out samples.
def _random_binomial_noncpu(
shape,
counts,
probs,
output_dtype=tf.float32,
seed=None,
name=None):
"""Sample using XLA-friendly python-based rejection sampler."""
with tf.name_scope(name or 'binomial_noncpu'):
probs = tf.where(counts > 0, probs, 0)
batch_shape = ps.broadcast_shape(ps.shape(counts), ps.shape(probs))
full_shape = ps.concat([shape, batch_shape], axis=0)
inversion_seed, btrs_seed = samplers.split_seed(seed)
p_lt_half = probs < .5
q = tf.where(p_lt_half, probs, 1 - probs)
q_is_nan = tf.math.is_nan(q)
q_le_0 = (q <= 0.)
q = tf.where(q_is_nan | q_le_0, tf.constant(.01, q.dtype), q)
use_inversion = counts * q < 10.
counts_for_inversion = tf.where(use_inversion, counts, 0)
inversion_samples = _binomial_inversion(
counts_for_inversion, q, full_shape, inversion_seed)
counts_for_btrs = tf.where(
use_inversion, tf.constant(10000., counts.dtype), counts)
q_for_btrs = tf.where(use_inversion, tf.constant(.5, q.dtype), q)
btrs_samples = _btrs(counts_for_btrs, q_for_btrs, full_shape, btrs_seed)
samples = tf.where(use_inversion, inversion_samples, btrs_samples)
samples = tf.where(q_le_0, tf.zeros([], samples.dtype), samples)
samples = tf.where(
q_is_nan, tf.constant(float('nan'), samples.dtype), samples)
samples = tf.where(p_lt_half, samples, counts - samples)
return tf.stop_gradient(tf.cast(samples, output_dtype))
# tf.function required to access Grappler's implementation_selector.
@implementation_selection.never_runs_functions_eagerly
# TODO(b/163029794): Shape relaxation breaks XLA.
@tf.function(autograph=False)
def _random_binomial(
shape,
counts,
probs,
output_dtype=tf.float32,
seed=None,
name=None):
"""Sample a binomial, CPU specialized to stateless_binomial.
Args:
shape: Shape of the full sample output. Trailing dims should match the
broadcast shape of `counts` with `probs|logits`.
counts: Batch of total_count.
probs: Batch of p(success).
output_dtype: DType of samples.
seed: PRNG seed; see `tfp.random.sanitize_seed` for details.
name: Optional name for related ops.
Returns:
samples: Samples from binomial distributions.
runtime_used_for_sampling: One of `implementation_selection._RUNTIME_*`.
"""
with tf.name_scope(name or 'random_binomial'):
seed = samplers.sanitize_seed(seed)
shape = ps.convert_to_shape_tensor(shape, dtype_hint=tf.int32, name='shape')
params = dict(shape=shape, counts=counts, probs=probs,
output_dtype=output_dtype, seed=seed, name=name)
sampler_impl = implementation_selection.implementation_selecting(
fn_name='binomial',
default_fn=_random_binomial_noncpu,
cpu_fn=_random_binomial_cpu)
return sampler_impl(**params)
class Binomial(
distribution.DiscreteDistributionMixin,
distribution.AutoCompositeTensorDistribution):
"""Binomial distribution.
This distribution is parameterized by `probs`, a (batch of) probabilities for
drawing a `1`, and `total_count`, the number of trials per draw from the
Binomial.
#### Mathematical Details
The Binomial is a distribution over the number of `1`'s in `total_count`
independent trials, with each trial having the same probability of `1`, i.e.,
`probs`.
The probability mass function (pmf) is,
```none
pmf(k; n, p) = p**k (1 - p)**(n - k) / Z
Z = k! (n - k)! / n!
```
where:
* `total_count = n`,
* `probs = p`,
* `Z` is the normalizing constant, and,
* `n!` is the factorial of `n`.
#### Examples
Create a single distribution, corresponding to 5 coin flips.
```python
dist = Binomial(total_count=5., probs=.5)
```
Create a single distribution (using logits), corresponding to 5 coin flips.
```python
dist = Binomial(total_count=5., logits=0.)
```
Creates 3 distributions with the third distribution most likely to have
successes.
```python
p = [.2, .3, .8]
# n will be broadcast to [4., 4., 4.], to match p.
dist = Binomial(total_count=4., probs=p)
```
The distribution functions can be evaluated on counts.
```python
# counts same shape as p.
counts = [1., 2, 3]
dist.prob(counts) # Shape [3]
# p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts.
counts = [[1., 2, 1], [2, 2, 4]]
dist.prob(counts) # Shape [2, 3]
# p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7, 3]
```
"""
def __init__(self,
total_count,
logits=None,
probs=None,
validate_args=False,
allow_nan_stats=True,
name=None):
"""Initialize a batch of Binomial distributions.
Args:
total_count: Non-negative floating point tensor with shape broadcastable
to `[N1,..., Nm]` with `m >= 0` and the same dtype as `probs` or
`logits`. Defines this as a batch of `N1 x ... x Nm` different Binomial
distributions. Its components should be equal to integer values.
logits: Floating point tensor representing the log-odds of a
positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and
the same dtype as `total_count`. Each entry represents logits for the
probability of success for independent Binomial distributions. Only one
of `logits` or `probs` should be passed in.
probs: Positive floating point tensor with shape broadcastable to
`[N1,..., Nm]` `m >= 0`, `probs in [0, 1]`. Each entry represents the
probability of success for independent Binomial distributions. Only one
of `logits` or `probs` should be passed in.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = dict(locals())
if (probs is None) == (logits is None):
raise ValueError(
'Construct `Binomial` with `probs` or `logits`, but not both.')
with tf.name_scope(name or 'Binomial') as name:
dtype = dtype_util.common_dtype([total_count, logits, probs], tf.float32)
self._total_count = tensor_util.convert_nonref_to_tensor(
total_count, dtype=dtype, name='total_count')
self._logits = tensor_util.convert_nonref_to_tensor(
logits, dtype=dtype, name='logits')
self._probs = tensor_util.convert_nonref_to_tensor(
probs, dtype=dtype, name='probs')
super(Binomial, self).__init__(
dtype=dtype,
reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
return dict(
total_count=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=parameter_properties
.BIJECTOR_NOT_IMPLEMENTED),
logits=parameter_properties.ParameterProperties(),
probs=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=sigmoid_bijector.Sigmoid,
is_preferred=False))
@property
def total_count(self):
"""Number of trials."""
return self._total_count
@property
def logits(self):
"""Input argument `logits`."""
return self._logits
@property
def probs(self):
"""Input argument `probs`."""
return self._probs
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
@distribution_util.AppendDocstring(_binomial_sample_note)
def _log_prob(self, counts):
total_count = tf.convert_to_tensor(self.total_count)
if self._logits is not None:
unnorm = _log_unnormalized_prob_logits(self._logits, counts, total_count)
else:
unnorm = _log_unnormalized_prob_probs(self._probs, counts, total_count)
norm = _log_normalization(counts, total_count)
return unnorm - norm
@distribution_util.AppendDocstring(_binomial_sample_note)
def _prob(self, counts):
return tf.exp(self._log_prob(counts))
def _cdf(self, counts):
total_count = tf.convert_to_tensor(self.total_count)
probs = self._probs_parameter_no_checks(total_count=total_count)
probs, counts = _maybe_broadcast(probs, counts)
return _bdtr(k=counts, n=total_count, p=probs)
@distribution_util.AppendDocstring(_binomial_sample_note)
def _sample_n(self, n, seed=None):
seed = samplers.sanitize_seed(seed, salt='binomial')
total_count = tf.convert_to_tensor(self._total_count)
if self._probs is None:
probs = self._probs_parameter_no_checks(total_count=total_count)
else:
probs = tf.convert_to_tensor(self._probs)
return _random_binomial(
shape=ps.convert_to_shape_tensor([n]),
counts=total_count,
probs=probs,
output_dtype=self.dtype,
seed=seed)[0]
def _mean(self, probs=None, total_count=None):
if total_count is None:
total_count = tf.convert_to_tensor(self._total_count)
if probs is None:
probs = self._probs_parameter_no_checks(total_count=total_count)
return total_count * probs
def _variance(self):
total_count = tf.convert_to_tensor(self._total_count)
probs = self._probs_parameter_no_checks(total_count=total_count)
return self._mean(probs=probs, total_count=total_count) * (1. - probs)
@distribution_util.AppendDocstring(
"""Note that when `(1 + total_count) * probs` is an integer, there are
actually two modes. Namely, `(1 + total_count) * probs` and
`(1 + total_count) * probs - 1` are both modes. Here we return only the
larger of the two modes.""")
def _mode(self):
total_count = tf.convert_to_tensor(self._total_count)
probs = self._probs_parameter_no_checks(total_count=total_count)
return tf.math.minimum(
total_count, tf.floor((1. + total_count) * probs))
def logits_parameter(self, name=None):
"""Logits computed from non-`None` input arg (`probs` or `logits`)."""
with self._name_and_control_scope(name or 'logits_parameter'):
return self._logits_parameter_no_checks()
def _logits_parameter_no_checks(self):
if self._logits is None:
probs = tf.convert_to_tensor(self._probs)
return tf.math.log(probs) - tf.math.log1p(-probs)
return tensor_util.identity_as_tensor(self._logits)
def probs_parameter(self, name=None):
"""Probs computed from non-`None` input arg (`probs` or `logits`)."""
with self._name_and_control_scope(name or 'probs_parameter'):
return self._probs_parameter_no_checks()
def _probs_parameter_no_checks(self, total_count=None):
if self._logits is None:
probs = tensor_util.identity_as_tensor(self._probs)
else:
probs = tf.math.sigmoid(self._logits)
# Suppress potentially nasty probs like `nan` b/c they don't matter where
# total_count == 0.
if total_count is None:
total_count = self.total_count
return tf.where(total_count > 0, probs, 0)
def _default_event_space_bijector(self):
return
def _parameter_control_dependencies(self, is_init):
if not self.validate_args:
return []
assertions = []
if is_init != tensor_util.is_ref(self.total_count):
total_count = tf.convert_to_tensor(self.total_count)
msg1 = 'Argument `total_count` must be non-negative.'
msg2 = 'Argument `total_count` cannot contain fractional components.'
assertions += [
assert_util.assert_non_negative(total_count, message=msg1),
distribution_util.assert_integer_form(total_count, message=msg2),
]
if self._probs is not None:
if is_init != tensor_util.is_ref(self._probs):
probs = tf.convert_to_tensor(self._probs)
one = tf.constant(1., probs.dtype)
assertions += [
assert_util.assert_non_negative(
probs, message='probs has components less than 0.'),
assert_util.assert_less_equal(
probs, one, message='probs has components greater than 1.')
]
return assertions
def _sample_control_dependencies(self, counts):
"""Check counts for proper values."""
assertions = []
if not self.validate_args:
return assertions
assertions.append(distribution_util.assert_casting_closed(
counts, target_dtype=tf.int32,
message='counts cannot contain fractional components.'))
assertions.append(assert_util.assert_non_negative(
counts, message='counts must be non-negative.'))
assertions.append(
assert_util.assert_less_equal(
counts, self.total_count,
message=('Sampled counts must be itemwise less than '
'or equal to `total_count` parameter.')))
return assertions
def _log_unnormalized_prob_logits(logits, counts, total_count):
"""Log unnormalized probability from logits."""
logits = tf.convert_to_tensor(logits)
# softplus(x) = log(1 + exp(x))
# sigmoid(x) = 1 / (1 + exp(-x)) = exp(x) / (exp(x) + 1)
# log(probs) = log(sigmoid(logits))
# = -log(1 + exp(-logits))
# = -softplus(-logits)
# log1p(-probs) = log(1 - sigmoid(logits))
# = log(1 - 1 / (1 + exp(-logits)))
# = log((1 + exp(-logits) - 1) / (1 + exp(-logits)))
# = log(exp(-logits) / (1 + exp(-logits)))
# = log(sigmoid(-logits))
# = -softplus(logits) # by log(sigmoid(x)) = -softplus(-x))
return (-tf.math.multiply_no_nan(tf.math.softplus(-logits), counts) -
tf.math.multiply_no_nan(
tf.math.softplus(logits), total_count - counts))
def _log_unnormalized_prob_probs(probs, counts, total_count):
"""Log unnormalized probability from probs."""
probs = tf.convert_to_tensor(probs)
return (tf.math.multiply_no_nan(tf.math.log(probs), counts) +
tf.math.multiply_no_nan(tf.math.log1p(-probs), total_count - counts))
def _log_normalization(counts, total_count):
return (special.lbeta(1. + counts, 1. + total_count - counts) +
tf.math.log(1. + total_count))
def _maybe_broadcast(a, b):
if not (tensorshape_util.is_fully_defined(a.shape) and
tensorshape_util.is_fully_defined(b.shape) and
tensorshape_util.is_compatible_with(a.shape, b.shape)):
# If both shapes are well defined and equal, we skip broadcasting.
b = b + tf.zeros_like(a)
a = a + tf.zeros_like(b)
return a, b