-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathdoublesided_maxwell.py
250 lines (200 loc) · 8.95 KB
/
doublesided_maxwell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright 2019 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Double-sided Maxwell distribution class."""
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow_probability.python import random as tfp_random
from tensorflow_probability.python.bijectors import identity as identity_bijector
from tensorflow_probability.python.bijectors import softplus as softplus_bijector
from tensorflow_probability.python.distributions import distribution
from tensorflow_probability.python.internal import assert_util
from tensorflow_probability.python.internal import dtype_util
from tensorflow_probability.python.internal import parameter_properties
from tensorflow_probability.python.internal import prefer_static as ps
from tensorflow_probability.python.internal import reparameterization
from tensorflow_probability.python.internal import samplers
from tensorflow_probability.python.internal import tensor_util
__all__ = [
'DoublesidedMaxwell',
]
class DoublesidedMaxwell(distribution.AutoCompositeTensorDistribution):
r"""Double-sided Maxwell distribution.
This distribution is useful to compute measure valued derivatives for Gaussian
distributions. See [Mohamed et al. 2019][1] for more details.
#### Mathematical details
The double-sided Maxwell distribution generalizes the Maxwell distribution to
the entire real line.
```none
pdf(x; mu, sigma) = 1/(sigma*sqrt(2*pi)) * ((x-mu)/sigma)^2
* exp(-0.5 ((x-mu)/sigma)^2)
```
where `loc = mu` and `scale = sigma`.
The DoublesidedMaxwell distribution is a member of the
[location-scale family](https://en.wikipedia.org/wiki/Location-scale_family),
i.e., it can be constructed as,
```none
X ~ DoublesidedMaxwell(loc=0, scale=1)
Y = loc + scale * X
```
The double-sided Maxwell is a symmetric distribution that extends the
one-sided maxwell from R+ to the entire real line. Their densities are
therefore the same up to a factor of 0.5.
It has several methods for generating random variates from it. The version
here uses 3 Gaussian variates and a uniform variate to generate the samples
The sampling path is:
mu + sigma* sgn(U-0.5)* sqrt(X^2 + Y^2 + Z^2) U~Unif; X,Y,Z ~N(0,1)
In the sampling process above, the random variates generated by
sqrt(X^2 + Y^2 + Z^2) are samples from the one-sided Maxwell
(or Maxwell-Boltzmann) distribution.
#### Examples
```python
import tensorflow_probability as tfp
tfd = tfp.distributions
# Define a single scalar DoublesidedMaxwell distribution.
dist = tfd.DoublesidedMaxwell(loc=0., scale=3.)
# Evaluate the cdf at 1, returning a scalar.
dist.cdf(1.)
# Define a batch of two scalar valued DoublesidedMaxwells.
# The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = tfd.DoublesidedMaxwell(loc=[1, 2.], scale=[11, 22.])
# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
dist.prob([0, 1.5])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
```
#### References
[1]: Mohamed, et all, "Monte Carlo Gradient Estimation in Machine Learning.",
2019 https://arxiv.org/abs/1906.10652
[2] B. Heidergott, et all "Sensitivity estimation for Gaussian
systems", 2008. European Journal of Operational Research,
vol. 187, pp193-207.
[3] G. Pflug. "Optimization of Stochastic Models: The Interface Between
Simulation and Optimization", 2002. Chp. 4.2, pg 247.
"""
def __init__(self,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name='doublesided_maxwell'):
"""Construct a Double-sided Maxwell distribution with `scale`.
Args:
loc: Floating point tensor; location of the distribution
scale: Floating point tensor; the scales of the distribution
Must contain only positive values.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs. Default value: `False` (i.e., do not validate args).
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or more
of the statistic's batch members are undefined.
Default value: `True`.
name: Python `str` name prefixed to Ops created by this class.
Default value: 'doublesided_maxwell'.
"""
parameters = dict(locals())
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([loc, scale], dtype_hint=tf.float32)
self._loc = tensor_util.convert_nonref_to_tensor(
value=loc, name='loc', dtype=dtype)
self._scale = tensor_util.convert_nonref_to_tensor(
value=scale, name='scale', dtype=dtype)
super(DoublesidedMaxwell, self).__init__(
dtype=self._scale.dtype,
reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
name=name)
@classmethod
def _parameter_properties(cls, dtype, num_classes=None):
# pylint: disable=g-long-lambda
return dict(
loc=parameter_properties.ParameterProperties(),
scale=parameter_properties.ParameterProperties(
default_constraining_bijector_fn=(
lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype)))))
# pylint: enable=g-long-lambda
@property
def loc(self):
"""Distribution parameter for the mean."""
return self._loc
@property
def scale(self):
"""Distribution parameter for the scale."""
return self._scale
def _event_shape_tensor(self):
return tf.constant([], dtype=tf.int32)
def _event_shape(self):
return tf.TensorShape([])
def _log_prob(self, x):
scale = tf.convert_to_tensor(self.scale)
z = self._z(x, scale=scale)
square_z = tf.square(z)
log_unnormalized_prob = -0.5 * square_z + tf.math.log(square_z)
log_normalization = 0.5 * np.log(2. * np.pi) + tf.math.log(scale)
return log_unnormalized_prob - log_normalization
def _z(self, x, scale=None):
"""Standardize input `x` to a standard maxwell."""
with tf.name_scope('standardize'):
return (x - self.loc) / (self.scale if scale is None else scale)
def _sample_n(self, n, seed=None):
# Generate samples using:
# mu + sigma* sgn(U-0.5)* sqrt(X^2 + Y^2 + Z^2) U~Unif; X,Y,Z ~N(0,1)
normal_seed, rademacher_seed = samplers.split_seed(
seed, salt='DoublesidedMaxwell')
loc = tf.convert_to_tensor(self.loc)
scale = tf.convert_to_tensor(self.scale)
shape = ps.pad(
self._batch_shape_tensor(loc=loc, scale=scale),
paddings=[[1, 0]], constant_values=n)
# Generate one-sided Maxwell variables by using 3 Gaussian variates
norm_rvs = samplers.normal(
shape=ps.pad(shape, paddings=[[0, 1]], constant_values=3),
dtype=self.dtype,
seed=normal_seed)
maxwell_rvs = tf.norm(norm_rvs, axis=-1)
# Generate random signs for the symmetric variates.
random_sign = tfp_random.rademacher(shape, seed=rademacher_seed)
sampled = random_sign * maxwell_rvs * scale + loc
return sampled
def _mean(self):
return self.loc * tf.ones_like(self.scale)
def _stddev(self):
return np.sqrt(3.) * self.scale * tf.ones_like(self.loc)
def _default_event_space_bijector(self):
return identity_bijector.Identity(validate_args=self.validate_args)
def _parameter_control_dependencies(self, is_init):
assertions = []
if is_init:
try:
self._batch_shape()
except ValueError:
raise ValueError(
'Arguments `loc` and `scale` must have compatible shapes; '
'loc.shape={}, scale.shape={}.'.format(
self.loc.shape, self.scale.shape))
# We don't bother checking the shapes in the dynamic case because
# all member functions access both arguments anyway.
if not self.validate_args:
assert not assertions # Should never happen.
return []
if is_init != tensor_util.is_ref(self.scale):
assertions.append(assert_util.assert_positive(
self.scale, message='Argument `scale` must be positive.'))
return assertions