-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbenchmark_models.js
147 lines (128 loc) · 4.86 KB
/
benchmark_models.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* The purpose of this test file is to benchmark models by a test runner, such
* as karma. To invoke this test, inlude this file to the `files` field of
* `karma.conf.js`.
*
* This file wraps the model benchmarking into a Jasmine test and the benchmark
* results will be logged to the console.
*/
async function getEnvSummary() {
let envSummary = `${tf.getBackend()} backend`;
if (tf.getBackend() === 'webgl') {
envSummary += `, version ${tf.env().get('WEBGL_VERSION')}`;
} else if (tf.getBackend() === 'wasm') {
const hasSIMD = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');
envSummary += hasSIMD ? ' with SIMD' : ' without SIMD';
}
return envSummary;
}
async function getBenchmarkSummary(timeInfo, memoryInfo, modelName = 'model') {
if (timeInfo == null) {
throw new Error('Missing the timeInfo parameter.');
} else if (timeInfo.times.length === 0) {
throw new Error('Missing the memoryInfo parameter.');
} else if (memoryInfo == null) {
throw new Error('The length of timeInfo.times is at least 1.');
}
const numRuns = timeInfo.times.length;
const envSummary = await getEnvSummary();
const benchmarkSummary = `
benchmark the ${modelName} on ${envSummary}
1st inference time: ${printTime(timeInfo.times[0])}
Subsequent average inference time (${numRuns} runs): ${printTime(timeInfo.averageTimeExclFirst)}
Best inference time: ${printTime(timeInfo.minTime)}
Peak memory: ${printMemory(memoryInfo.peakBytes)}
`;
return benchmarkSummary;
}
const KARMA_SERVER = './base';
async function benchmarkModel(benchmarkParameters) {
// Load the model.
const benchmark = benchmarks[benchmarkParameters.model];
const numRuns = benchmarkParameters.numRuns;
let model;
if (benchmarkParameters.model === 'custom') {
if (benchmarkParameters.modelUrl == null) {
throw new Error('Please provide model url for the custom model.');
}
model = await loadModelByUrl(benchmarkParameters.modelUrl);
} else {
model = await benchmark.load();
}
// Benchmark.
let timeInfo;
let memoryInfo;
if (benchmark.predictFunc != null) {
const predict = benchmark.predictFunc();
timeInfo = await timeInference(() => predict(model), numRuns);
memoryInfo = await profileInference(() => predict(model));
} else {
const input = generateInput(model);
timeInfo = await timeModelInference(model, input, numRuns);
memoryInfo = await profileModelInference(model, input);
}
return { timeInfo, memoryInfo };
}
async function benchmarkCodeSnippet(benchmarkParameters) {
let predict = null;
const setupCodeSnippetEnv = benchmarkParameters.setupCodeSnippetEnv || '';
const codeSnippet = benchmarkParameters.codeSnippet || ''
eval(setupCodeSnippetEnv.concat(codeSnippet));
if (predict == null) {
throw new Error(
'predict function is suppoed to be defined in codeSnippet.');
}
// Warm up.
await timeInference(predict, 1);
// Benchmark code snippet.
timeInfo = await timeInference(predict, benchmarkParameters.numRuns);
memoryInfo = await profileInference(predict);
return { timeInfo, memoryInfo };
}
describe('BrowserStack benchmark', () => {
let benchmarkParameters;
beforeAll(async () => {
jasmine.DEFAULT_TIMEOUT_INTERVAL = 1000000;
const response = await fetch(`${KARMA_SERVER}/benchmark_parameters.json`);
benchmarkParameters = await response.json();
tf.env().set('SOFTWARE_WEBGL_ENABLED', true);
});
it(`benchmark`, async () => {
try {
// Setup benchmark environments.
const targetBackend = benchmarkParameters.backend;
await tf.setBackend(targetBackend);
// Run benchmark and stringify results.
let resultObj;
if (benchmarkParameters.model === 'codeSnippet') {
resultObj = await benchmarkCodeSnippet(benchmarkParameters);
} else {
resultObj = await benchmarkModel(benchmarkParameters);
}
// Get GPU hardware info.
resultObj.gpuInfo =
targetBackend === 'webgl' ? (await getRendererInfo()) : 'MISS';
// Report results.
console.log(
`<tfjs_benchmark>${JSON.stringify(resultObj)}</tfjs_benchmark>`);
} catch (error) {
console.log(`<tfjs_error>${error}</tfjs_error>`);
}
});
});