-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbrowser.ts
436 lines (405 loc) · 15.4 KB
/
browser.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {env} from '../environment';
import {Draw, DrawAttrs, DrawInputs, FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';
import {getKernel, NamedAttrMap} from '../kernel_registry';
import {Tensor, Tensor2D, Tensor3D} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {convertToTensor} from '../tensor_util_env';
import {DrawOptions, ImageOptions, PixelData, TensorLike} from '../types';
import {cast} from './cast';
import {op} from './operation';
import {tensor3d} from './tensor3d';
let fromPixels2DContext: CanvasRenderingContext2D;
let hasToPixelsWarned = false;
/**
* Creates a `tf.Tensor` from an image.
*
* ```js
* const image = new ImageData(1, 1);
* image.data[0] = 100;
* image.data[1] = 150;
* image.data[2] = 200;
* image.data[3] = 255;
*
* tf.browser.fromPixels(image).print();
* ```
*
* @param pixels The input image to construct the tensor from. The
* supported image types are all 4-channel. You can also pass in an image
* object with following attributes:
* `{data: Uint8Array; width: number; height: number}`
* @param numChannels The number of channels of the output tensor. A
* numChannels value less than 4 allows you to ignore channels. Defaults to
* 3 (ignores alpha channel of input image).
*
* @returns A Tensor3D with the shape `[height, width, numChannels]`.
*
* Note: fromPixels can be lossy in some cases, same image may result in
* slightly different tensor values, if rendered by different rendering
* engines. This means that results from different browsers, or even same
* browser with CPU and GPU rendering engines can be different. See discussion
* in details:
* https://github.com/tensorflow/tfjs/issues/5482
*
* @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}
*/
function fromPixels_(
pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|
HTMLVideoElement|ImageBitmap,
numChannels = 3): Tensor3D {
// Sanity checks.
if (numChannels > 4) {
throw new Error(
'Cannot construct Tensor with more than 4 channels from pixels.');
}
if (pixels == null) {
throw new Error('pixels passed to tf.browser.fromPixels() can not be null');
}
let isPixelData = false;
let isImageData = false;
let isVideo = false;
let isImage = false;
let isCanvasLike = false;
let isImageBitmap = false;
if ((pixels as PixelData).data instanceof Uint8Array) {
isPixelData = true;
} else if (
typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {
isImageData = true;
} else if (
typeof (HTMLVideoElement) !== 'undefined' &&
pixels instanceof HTMLVideoElement) {
isVideo = true;
} else if (
typeof (HTMLImageElement) !== 'undefined' &&
pixels instanceof HTMLImageElement) {
isImage = true;
// tslint:disable-next-line: no-any
} else if ((pixels as any).getContext != null) {
isCanvasLike = true;
} else if (
typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {
isImageBitmap = true;
} else {
throw new Error(
'pixels passed to tf.browser.fromPixels() must be either an ' +
`HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +
`in browser, or OffscreenCanvas, ImageData in webworker` +
` or {data: Uint32Array, width: number, height: number}, ` +
`but was ${(pixels as {}).constructor.name}`);
}
// If the current backend has 'FromPixels' registered, it has a more
// efficient way of handling pixel uploads, so we call that.
const kernel = getKernel(FromPixels, ENGINE.backendName);
if (kernel != null) {
const inputs: FromPixelsInputs = {pixels};
const attrs: FromPixelsAttrs = {numChannels};
return ENGINE.runKernel(
FromPixels, inputs as unknown as NamedTensorMap,
attrs as unknown as NamedAttrMap);
}
const [width, height] = isVideo ?
[
(pixels as HTMLVideoElement).videoWidth,
(pixels as HTMLVideoElement).videoHeight
] :
[pixels.width, pixels.height];
let vals: Uint8ClampedArray|Uint8Array;
if (isCanvasLike) {
vals =
// tslint:disable-next-line:no-any
(pixels as any).getContext('2d').getImageData(0, 0, width, height).data;
} else if (isImageData || isPixelData) {
vals = (pixels as PixelData | ImageData).data;
} else if (isImage || isVideo || isImageBitmap) {
if (fromPixels2DContext == null) {
if (typeof document === 'undefined') {
if (typeof OffscreenCanvas !== 'undefined' &&
typeof OffscreenCanvasRenderingContext2D !== 'undefined') {
// @ts-ignore
fromPixels2DContext = new OffscreenCanvas(1, 1).getContext('2d');
} else {
throw new Error(
'Cannot parse input in current context. ' +
'Reason: OffscreenCanvas Context2D rendering is not supported.');
}
} else {
fromPixels2DContext = document.createElement('canvas').getContext(
'2d', {willReadFrequently: true});
}
}
fromPixels2DContext.canvas.width = width;
fromPixels2DContext.canvas.height = height;
fromPixels2DContext.drawImage(
pixels as HTMLVideoElement, 0, 0, width, height);
vals = fromPixels2DContext.getImageData(0, 0, width, height).data;
}
let values: Int32Array;
if (numChannels === 4) {
values = new Int32Array(vals);
} else {
const numPixels = width * height;
values = new Int32Array(numPixels * numChannels);
for (let i = 0; i < numPixels; i++) {
for (let channel = 0; channel < numChannels; ++channel) {
values[i * numChannels + channel] = vals[i * 4 + channel];
}
}
}
const outShape: [number, number, number] = [height, width, numChannels];
return tensor3d(values, outShape, 'int32');
}
// Helper functions for |fromPixelsAsync| to check whether the input can
// be wrapped into imageBitmap.
function isPixelData(pixels: PixelData|ImageData|HTMLImageElement|
HTMLCanvasElement|HTMLVideoElement|
ImageBitmap): pixels is PixelData {
return (pixels != null) && ((pixels as PixelData).data instanceof Uint8Array);
}
function isImageBitmapFullySupported() {
return typeof window !== 'undefined' &&
typeof (ImageBitmap) !== 'undefined' &&
window.hasOwnProperty('createImageBitmap');
}
function isNonEmptyPixels(pixels: PixelData|ImageData|HTMLImageElement|
HTMLCanvasElement|HTMLVideoElement|ImageBitmap) {
return pixels != null && pixels.width !== 0 && pixels.height !== 0;
}
function canWrapPixelsToImageBitmap(pixels: PixelData|ImageData|
HTMLImageElement|HTMLCanvasElement|
HTMLVideoElement|ImageBitmap) {
return isImageBitmapFullySupported() && !(pixels instanceof ImageBitmap) &&
isNonEmptyPixels(pixels) && !isPixelData(pixels);
}
/**
* Creates a `tf.Tensor` from an image in async way.
*
* ```js
* const image = new ImageData(1, 1);
* image.data[0] = 100;
* image.data[1] = 150;
* image.data[2] = 200;
* image.data[3] = 255;
*
* (await tf.browser.fromPixelsAsync(image)).print();
* ```
* This API is the async version of fromPixels. The API will first
* check |WRAP_TO_IMAGEBITMAP| flag, and try to wrap the input to
* imageBitmap if the flag is set to true.
*
* @param pixels The input image to construct the tensor from. The
* supported image types are all 4-channel. You can also pass in an image
* object with following attributes:
* `{data: Uint8Array; width: number; height: number}`
* @param numChannels The number of channels of the output tensor. A
* numChannels value less than 4 allows you to ignore channels. Defaults to
* 3 (ignores alpha channel of input image).
*
* @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}
*/
export async function fromPixelsAsync(
pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|
HTMLVideoElement|ImageBitmap,
numChannels = 3) {
let inputs: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|
HTMLVideoElement|ImageBitmap = null;
// Check whether the backend needs to wrap |pixels| to imageBitmap and
// whether |pixels| can be wrapped to imageBitmap.
if (env().getBool('WRAP_TO_IMAGEBITMAP') &&
canWrapPixelsToImageBitmap(pixels)) {
// Force the imageBitmap creation to not do any premultiply alpha
// ops.
let imageBitmap;
try {
// wrap in try-catch block, because createImageBitmap may not work
// properly in some browsers, e.g.
// https://bugzilla.mozilla.org/show_bug.cgi?id=1335594
// tslint:disable-next-line: no-any
imageBitmap = await (createImageBitmap as any)(
pixels as ImageBitmapSource, {premultiplyAlpha: 'none'});
} catch (e) {
imageBitmap = null;
}
// createImageBitmap will clip the source size.
// In some cases, the input will have larger size than its content.
// E.g. new Image(10, 10) but with 1 x 1 content. Using
// createImageBitmap will clip the size from 10 x 10 to 1 x 1, which
// is not correct. We should avoid wrapping such resouce to
// imageBitmap.
if (imageBitmap != null && imageBitmap.width === pixels.width &&
imageBitmap.height === pixels.height) {
inputs = imageBitmap;
} else {
inputs = pixels;
}
} else {
inputs = pixels;
}
return fromPixels_(inputs, numChannels);
}
function validateImgTensor(img: Tensor2D|Tensor3D) {
if (img.rank !== 2 && img.rank !== 3) {
throw new Error(
`toPixels only supports rank 2 or 3 tensors, got rank ${img.rank}.`);
}
const depth = img.rank === 2 ? 1 : img.shape[2];
if (depth > 4 || depth === 2) {
throw new Error(
`toPixels only supports depth of size ` +
`1, 3 or 4 but got ${depth}`);
}
if (img.dtype !== 'float32' && img.dtype !== 'int32') {
throw new Error(
`Unsupported type for toPixels: ${img.dtype}.` +
` Please use float32 or int32 tensors.`);
}
}
function validateImageOptions(imageOptions: ImageOptions) {
const alpha = imageOptions ?.alpha || 1;
if (alpha > 1 || alpha < 0) {
throw new Error(`Alpha value ${alpha} is suppoed to be in range [0 - 1].`);
}
}
/**
* Draws a `tf.Tensor` of pixel values to a byte array or optionally a
* canvas.
*
* When the dtype of the input is 'float32', we assume values in the range
* [0-1]. Otherwise, when input is 'int32', we assume values in the range
* [0-255].
*
* Returns a promise that resolves when the canvas has been drawn to.
*
* @param img A rank-2 tensor with shape `[height, width]`, or a rank-3 tensor
* of shape `[height, width, numChannels]`. If rank-2, draws grayscale. If
* rank-3, must have depth of 1, 3 or 4. When depth of 1, draws
* grayscale. When depth of 3, we draw with the first three components of
* the depth dimension corresponding to r, g, b and alpha = 1. When depth of
* 4, all four components of the depth dimension correspond to r, g, b, a.
* @param canvas The canvas to draw to.
*
* @doc {heading: 'Browser', namespace: 'browser'}
*/
export async function toPixels(
img: Tensor2D|Tensor3D|TensorLike,
canvas?: HTMLCanvasElement): Promise<Uint8ClampedArray> {
let $img = convertToTensor(img, 'img', 'toPixels');
if (!(img instanceof Tensor)) {
// Assume int32 if user passed a native array.
const originalImgTensor = $img;
$img = cast(originalImgTensor, 'int32');
originalImgTensor.dispose();
}
validateImgTensor($img);
const [height, width] = $img.shape.slice(0, 2);
const depth = $img.rank === 2 ? 1 : $img.shape[2];
const data = await $img.data();
const multiplier = $img.dtype === 'float32' ? 255 : 1;
const bytes = new Uint8ClampedArray(width * height * 4);
for (let i = 0; i < height * width; ++i) {
const rgba = [0, 0, 0, 255];
for (let d = 0; d < depth; d++) {
const value = data[i * depth + d];
if ($img.dtype === 'float32') {
if (value < 0 || value > 1) {
throw new Error(
`Tensor values for a float32 Tensor must be in the ` +
`range [0 - 1] but encountered ${value}.`);
}
} else if ($img.dtype === 'int32') {
if (value < 0 || value > 255) {
throw new Error(
`Tensor values for a int32 Tensor must be in the ` +
`range [0 - 255] but encountered ${value}.`);
}
}
if (depth === 1) {
rgba[0] = value * multiplier;
rgba[1] = value * multiplier;
rgba[2] = value * multiplier;
} else {
rgba[d] = value * multiplier;
}
}
const j = i * 4;
bytes[j + 0] = Math.round(rgba[0]);
bytes[j + 1] = Math.round(rgba[1]);
bytes[j + 2] = Math.round(rgba[2]);
bytes[j + 3] = Math.round(rgba[3]);
}
if (canvas != null) {
if (!hasToPixelsWarned) {
const kernel = getKernel(Draw, ENGINE.backendName);
if (kernel != null) {
console.warn(
'tf.browser.toPixels is not efficient to draw tensor on canvas. ' +
'Please try tf.browser.draw instead.');
hasToPixelsWarned = true;
}
}
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext('2d');
const imageData = new ImageData(bytes, width, height);
ctx.putImageData(imageData, 0, 0);
}
if ($img !== img) {
$img.dispose();
}
return bytes;
}
/**
* Draws a `tf.Tensor` to a canvas.
*
* When the dtype of the input is 'float32', we assume values in the range
* [0-1]. Otherwise, when input is 'int32', we assume values in the range
* [0-255].
*
* @param image The tensor to draw on the canvas. Must match one of
* these shapes:
* - Rank-2 with shape `[height, width`]: Drawn as grayscale.
* - Rank-3 with shape `[height, width, 1]`: Drawn as grayscale.
* - Rank-3 with shape `[height, width, 3]`: Drawn as RGB with alpha set in
* `imageOptions` (defaults to 1, which is opaque).
* - Rank-3 with shape `[height, width, 4]`: Drawn as RGBA.
* @param canvas The canvas to draw to.
* @param options The configuration arguments for image to be drawn and the
* canvas to draw to.
*
* @doc {heading: 'Browser', namespace: 'browser'}
*/
export function draw(
image: Tensor2D|Tensor3D|TensorLike, canvas: HTMLCanvasElement,
options?: DrawOptions): void {
let $img = convertToTensor(image, 'img', 'draw');
if (!(image instanceof Tensor)) {
// Assume int32 if user passed a native array.
const originalImgTensor = $img;
$img = cast(originalImgTensor, 'int32');
originalImgTensor.dispose();
}
validateImgTensor($img);
validateImageOptions(options?.imageOptions);
const inputs: DrawInputs = {image: $img};
const attrs: DrawAttrs = {canvas, options};
ENGINE.runKernel(
Draw, inputs as unknown as NamedTensorMap,
attrs as unknown as NamedAttrMap);
}
export const fromPixels = /* @__PURE__ */ op({fromPixels_});