-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbuffer.ts
54 lines (52 loc) · 1.94 KB
/
buffer.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {TensorBuffer} from '../tensor';
import {DataType, DataTypeMap, Rank, ShapeMap} from '../types';
import * as util from '../util';
/**
* Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.
*
* The values are stored in CPU as `TypedArray`. Fill the buffer using
* `buffer.set()`, or by modifying directly `buffer.values`.
*
* When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with
* those values.
*
* ```js
* // Create a buffer and set values at particular indices.
* const buffer = tf.buffer([2, 2]);
* buffer.set(3, 0, 0);
* buffer.set(5, 1, 0);
*
* // Convert the buffer back to a tensor.
* buffer.toTensor().print();
* ```
*
* @param shape An array of integers defining the output tensor shape.
* @param dtype The dtype of the buffer. Defaults to 'float32'.
* @param values The values of the buffer as `TypedArray`. Defaults to
* zeros.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
export function buffer<R extends Rank, D extends DataType = 'float32'>(
shape: ShapeMap[R], dtype: D = 'float32' as D,
values?: DataTypeMap[D]): TensorBuffer<R, D> {
dtype = dtype || 'float32' as D;
util.assertNonNegativeIntegerDimensions(shape);
return new TensorBuffer<R, D>(shape, dtype, values);
}