-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathconcat.ts
96 lines (88 loc) · 3.01 KB
/
concat.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {Concat, ConcatAttrs, ConcatInputs} from '../kernel_names';
import {NamedAttrMap} from '../kernel_registry';
import {Tensor} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {convertToTensorArray} from '../tensor_util_env';
import {TensorLike} from '../types';
import {assert} from '../util';
import {clone} from './clone';
import {op} from './operation';
/**
* Concatenates a list of `tf.Tensor`s along a given axis.
*
* The tensors ranks and types must match, and their sizes must match in all
* dimensions except `axis`.
*
* Also available are stricter rank-specific methods that assert that
* `tensors` are of the given rank:
* - `tf.concat1d`
* - `tf.concat2d`
* - `tf.concat3d`
* - `tf.concat4d`
*
* Except `tf.concat1d` (which does not have axis param), all methods have
* same signature as this method.
*
* ```js
* const a = tf.tensor1d([1, 2]);
* const b = tf.tensor1d([3, 4]);
* a.concat(b).print(); // or a.concat(b)
* ```
*
* ```js
* const a = tf.tensor1d([1, 2]);
* const b = tf.tensor1d([3, 4]);
* const c = tf.tensor1d([5, 6]);
* tf.concat([a, b, c]).print();
* ```
*
* ```js
* const a = tf.tensor2d([[1, 2], [10, 20]]);
* const b = tf.tensor2d([[3, 4], [30, 40]]);
* const axis = 1;
* tf.concat([a, b], axis).print();
* ```
* @param tensors A list of tensors to concatenate.
* @param axis The axis to concatenate along. Defaults to 0 (the first dim).
*
* @doc {heading: 'Tensors', subheading: 'Slicing and Joining'}
*/
function concat_<T extends Tensor>(tensors: Array<T|TensorLike>, axis = 0): T {
assert(tensors.length >= 1, () => 'Pass at least one tensor to concat');
const $tensors =
convertToTensorArray(tensors, 'tensors', 'concat', 'string_or_numeric');
if ($tensors[0].dtype === 'complex64') {
$tensors.forEach(tensor => {
if (tensor.dtype !== 'complex64') {
throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${tensor.dtype}. `);
}
});
}
if ($tensors.length === 1) {
return clone($tensors[0]);
}
const inputs: ConcatInputs = $tensors;
const attr: ConcatAttrs = {axis};
return ENGINE.runKernel(
Concat, inputs as unknown as NamedTensorMap,
attr as unknown as NamedAttrMap);
}
export const concat = /* @__PURE__ */ op({concat_});