-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathminimum.ts
75 lines (67 loc) · 2.35 KB
/
minimum.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {Minimum, MinimumInputs} from '../kernel_names';
import {Tensor} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {makeTypesMatch} from '../tensor_util';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import {assertAndGetBroadcastShape} from './broadcast_util';
import {cast} from './cast';
import {op} from './operation';
/**
* Returns the min of a and b (`a < b ? a : b`) element-wise.
* Supports broadcasting.
*
* We also expose `minimumStrict` which has the same signature as this op and
* asserts that `a` and `b` are the same shape (does not broadcast).
*
* ```js
* const a = tf.tensor1d([1, 4, 3, 16]);
* const b = tf.tensor1d([1, 2, 9, 4]);
*
* a.minimum(b).print(); // or tf.minimum(a, b)
* ```
*
* ```js
* // Broadcast minimum a with b.
* const a = tf.tensor1d([2, 4, 6, 8]);
* const b = tf.scalar(5);
*
* a.minimum(b).print(); // or tf.minimum(a, b)
* ```
*
* @param a The first tensor.
* @param b The second tensor. Must have the same type as `a`.
*
* @doc {heading: 'Operations', subheading: 'Arithmetic'}
*/
function minimum_<T extends Tensor>(
a: Tensor|TensorLike, b: Tensor|TensorLike): T {
let $a = convertToTensor(a, 'a', 'minimum');
let $b = convertToTensor(b, 'b', 'minimum');
[$a, $b] = makeTypesMatch($a, $b);
if ($a.dtype === 'bool') {
$a = cast($a, 'int32');
$b = cast($b, 'int32');
}
assertAndGetBroadcastShape($a.shape, $b.shape);
const inputs: MinimumInputs = {a: $a, b: $b};
return ENGINE.runKernel(Minimum, inputs as unknown as NamedTensorMap);
}
export const minimum = /* @__PURE__ */ op({minimum_});