-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathrand.ts
58 lines (54 loc) · 2.04 KB
/
rand.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {Tensor} from '../tensor';
import {DataType, Rank, ShapeMap} from '../types';
import {sizeFromShape} from '../util';
import {assertNonNegativeIntegerDimensions} from '../util_base';
import {op} from './operation';
/**
* Creates a `tf.Tensor` with values sampled from a random number generator
* function defined by the user.
*
* @param shape An array of integers defining the output tensor shape.
* @param randFunction A random number generator function which is called
* for each element in the output tensor.
* @param dtype The data type of the output tensor. Defaults to 'float32'.
*
* @doc {heading: 'Tensors', subheading: 'Random'}
*/
function rand_<R extends Rank>(
shape: ShapeMap[R], randFunction: () => number,
dtype?: DataType): Tensor<R> {
assertNonNegativeIntegerDimensions(shape);
const size = sizeFromShape(shape);
let values = null;
if (dtype == null || dtype === 'float32') {
values = new Float32Array(size);
} else if (dtype === 'int32') {
values = new Int32Array(size);
} else if (dtype === 'bool') {
values = new Uint8Array(size);
} else {
throw new Error(`Unknown data type ${dtype}`);
}
for (let i = 0; i < size; i++) {
values[i] = randFunction();
}
return ENGINE.makeTensor(values, shape, dtype) as Tensor<R>;
}
export const rand = /* @__PURE__ */ op({rand_});